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Identification in GRMD dog muscle of
critical miRNAs involved in
pathophysiology and effects associated
with MuStem cell transplantation
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Abstract

Background: Duchenne muscular dystrophy (DMD) is an X-linked muscle disease that leads to fibre necrosis and
progressive paralysis. At present, DMD remains a lethal disease without any effective treatment, requiring a better
understanding of the pathophysiological processes and comprehensive assessment of the newly identified
therapeutic strategies. MicroRNAs including members of the muscle-specific myomiR family have been identified as
being deregulated in muscle of DMD patients and in mdx mice used as a model for DMD. In recent years, the
Golden Retriever muscular dystrophy (GRMD) dog has appeared as the crucial animal model for objectively
assessing the potential of new innovative approaches. Here, we first aim at establishing the muscle expression
pattern of five selected miRNAs in this clinically relevant model to determine if they are similarly affected compared
with other DMD contexts. Second, we attempt to show whether these miRNAs could be impacted by the systemic
delivery of a promising stem cell candidate (referred to as MuStem cells) to implement our knowledge on its mode
of action and/or identify markers associated with cell therapy efficacy.

Methods: A comparative study of miRNAs expression levels and cellular localization was performed on 9-month-
old healthy dogs, as well as on three sub-sets of GRMD dog (without immunosuppression or cell transplantation,
with continuous immunosuppressive regimen and with MuStem cell transplantation under immunosuppression),
using RT-qPCR and in situ hybridization.

Results: We find that miR-222 expression is markedly up-regulated in GRMD dog muscle compared to healthy dog,
while miR-486 tends to be down-expressed. Intriguingly, the expression of miR-1, miR-133a and miR-206 does not
change. In situ hybridization exploration reveals, for the first time, that miR-486 and miR-206 are mainly localized in
newly regenerated fibres in GRMD dog muscle. In addition, we show that cyclosporine-based immunosuppression,
classically used in allogeneic cell transplantation, exclusively impacts the miR-206 expression. Finally, we
demonstrate that intra-arterial administration of MuStem cells results in up-regulation of miR-133a and miR-222
concomitantly with a down-expression of two sarcomeric proteins corresponding to miR-222 targets.
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Conclusion: We point out a differential muscle expression of miR-222 and miR-486 associated with the
pathophysiology of the clinically relevant GRMD dog model with a tissue localization focused on regenerated fibres.
We also establish a modified expression of miR-133a and miR-222 subsequent to MuStem cell infusion.

Keywords: miRNA, Stem cell therapy, Duchenne muscular dystrophy, GRMD dog, Skeletal muscle, In situ
hybridization

Background
Duchenne muscular dystrophy (DMD) is a progressive
and fatal X-linked recessive disorder of skeletal and car-
diac muscles. It is a particularly severe and common
form of muscular dystrophy, affecting one in 3500 males
at birth [1]. Mutations in the gene encoding the dys-
trophin lead to a lack of this protein, which normally en-
sures the essential link between the subsarcolemmal
cytoskeleton and the extracellular matrix at the muscle
fibre membrane [2, 3]. DMD is characterized by re-
peated cycles of necrosis/regeneration of muscle fibres,
progressive replacement of skeletal muscle by fibrotic
and adipose tissues and generalized muscle weakness,
paralysis and death [4]. Recently, several gene and cell-
based strategies have been developed to restore dys-
trophin expression in the Golden Retriever muscular
dystrophy (GRMD) dog, the clinically relevant animal
model of DMD. Some of these innovative approaches
have now entered preclinical studies [5, 6]. In parallel,
numerous studies are ongoing to define muscle molecu-
lar signatures that could be used to characterize dys-
trophic dog tissue [7, 8] or to validate the effect of
promising therapeutic strategies [9, 10].
MicroRNAs (miRNAs) are short non-coding RNA se-

quences of 21 to 25 nucleotides that regulate gene ex-
pression at a post-transcriptional level. Through binding
to target mRNA, they promote its degradation or trans-
lational inhibition [11, 12]. In muscle, specific miRNAs
(known as myomiRs), such as miR-1, miR-133 and miR-
206, are involved in regulation of the proliferation or dif-
ferentiation of myogenic cells [13–16] and are especially
regulated by transcription factors implicated in muscle
growth and development [17, 18]. Other miRNAs, such
as miR-29, miR-34, miR-222 and miR-486, also play key-
roles in modulating important pathways of skeletal
muscle processes [19–22]. Over the last few years, miR-
NAs have been found to be deregulated in muscular dys-
trophies [23, 24]. A specific DMD signature has been
identified based on eleven miRNAs that are deregulated
both in mdx mice and DMD patients [22]. As regards
myomiRs, several studies report that miR-1 and miR-133
are under-expressed, while miR-206 is over-expressed in
mdx muscles [25–27]. All these findings indicate an im-
portant role of miRNAs in pathophysiological pathways

regulating muscle response to damage and regeneration.
However, except for a preliminary study performed on
CXMDJ dog muscle [26], there is currently no experi-
mental data concerning miRNA status specifically in
GRMD dog skeletal muscle. Alternatively, a recent study
identified deregulated miRNAs in the serum of GRMD
dogs [28]. Although GRMD dogs more closely mimic
the human disease than mdx mouse, the lack of data on
this large animal model represents a real limitation for
the accurate description of the dysregulation of miRNAs
in a DMD-like context. Moreover, it is important to fill
this gap in our knowledge of the GRMD dog model, in
particular with regard to the preclinical evaluation of
new therapeutic proposals.
We show that systemic delivery of MuStem cells

(which are muscle-resident stem cells isolated from
healthy dog based on delayed adhesion properties) rep-
resents an attractive avenue for future therapeutic appli-
cations in DMD patients. Indeed, allogeneic MuStem
cell transplantation in GRMD dogs leads to reduced
muscle damage, increased regeneration activity, and a
persistent stabilization of clinical status [29]. In a previ-
ous study, we revealed the impact of MuStem cell trans-
plantation, with an up-regulation of genes reflecting a
sustained enhancement of muscle regeneration [30]. In
addition, MuStem cells can act on several other bio-
logical pathways implicated in protein degradation
mechanisms and energy metabolism, evoking a diffuse
impact with a large number of targeted biological
processes.
In the present study, we firstly aim at defining the

miRNA pattern in the skeletal muscle of 9-month-old
GRMD dogs corresponding to an advanced state of the
disease. Secondly, we attempt to determine how this pat-
tern could be affected following the intravenous delivery
of MuStem cells. We determine, for the first time, that
miR-222 displays a differential expression pattern in
GRMD dog muscle as shown by its marked up-
regulation. Using in situ hybridization, we show that
miR-206 and miR-486 are mainly expressed in clusters
of newly regenerated fibres. In addition, we demonstrate
an up-regulation of both miR-133 and miR-222 4 months
after MuStem cell transplantation, highlighting their po-
tential use as novel markers for the follow-up of effects
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associated with MuStem cell delivery in a dystrophic
context.

Methods
Ethics statement and animals
This study was approved by the Ethics Committee on Ani-
mal Experimentation of the Pays de la Loire Region
(France) in accordance with the guidelines from the
French National Research Council for the Care and Use of
Laboratory Animals (Permit Number: CEEA.2012.104).
All the dogs were obtained from the Centre d'élevage du
Domaine des Souches (Mézilles, France), which were kept
at the Boisbonne Centre for gene and cell therapy of
Oniris (Nantes, France). Fourteen 9-month-old golden re-
triever dogs were included in the study; five were healthy
and nine were GRMD. Affected dogs were identified in
the 1st week of life using polymerase chain reaction
(PCR)-based genotyping. This identification was cor-
roborated by a dramatic and early rise in levels of
serum creatine kinase [31]. GRMD dogs were divided
into three subsets: three GRMD dogs received neither
an immunosuppressive regimen nor cell transplant-
ation (subset denoted as GRMD), three received only
a continuous immunosuppressive regimen (mock
GRMD) and the remaining three received MuStem
cell transplantation under immunosuppression
(GRMDMuStem) (Table 1).

Cell delivery procedure
MuStem cells were isolated from a pool of hindlimb
muscles of 2.5-month-old healthy dogs and prepared as
previously described [29]. Three GRMD dogs (ranging
from 3.5 to 4.5 months of age) were submitted to a con-
tinuous cyclosporine-based immunosuppressive regimen
as established by Rouger et al. (2011) and received three
cell injections (spaced at an interval of 2 weeks):
GRMDMuStem. Each of these injections delivered 5.5×107

to 8.0×108 MuStem cells/kg into the cephalic vein using
laminar flow at a rate of 12 mL/min.

Clinical follow-up
A clinical score was measured weekly for all GRMD
dogs following a previously described method [29, 32].
Dogs were weighted and clinically assessed in a non-
blinded manner by a veterinarian on a weekly basis dur-
ing all the experiment. Briefly, this clinical score is based

on 11 locomotion and muscular criteria and 6 items re-
lated to general health status. It is expressed as a per-
centage of the maximum score defined as 100 % for a
healthy dog.

Muscle sampling
Biceps femoris muscle samples (0.5 cm3 fragments) were
collected surgically from the middle portion of the
muscle in 9-month-old (37 ± 5-week-old) healthy,
GRMD, mock GRMD and GRMDMuStem dogs. The Bi-
ceps femoris is a large and easily accessible muscle. This
time-point corresponds to 4 months after systemic ad-
ministration to the GRMDMuStem dogs and is the same
as in our previous transcriptomic study [30]. Muscle
fragments were divided into two parts for histological
and molecular analyses, and subsequently stored at
−80 °C until processing.

Histological analysis
Eight μm-thick cryosections were incubated with mouse
primary antibody directed against the developmental
myosin heavy chain (MyHCd, 1/20, Novocastra, Newcas-
tle, United Kingdom) for 1 h at 37 °C. After successive
incubation with a secondary biotinylated antibody and
streptavidin horseradish peroxidase conjugate (1/300,
Dako, Glostrup, Denmark), MyHCd protein was visual-
ized by diamidinobenzidine tetrahydrochloride (DAB;
Dako). Slides were then dehydrated and mounted in a
dry mounting medium. Morphometric analysis was per-
formed using a digital camera (Nikon DXM 1200, Nikon
Instruments, Badhoevedorp, The Netherlands) combined
with image-analysis software (NIS, Nikon). Microscopic
fields were randomly selected on immunolabelled sec-
tions using intermediate magnification to observe at
least 100 fibres. To determine the percentage of MyHCd
+ fibres, at least 662 fibres (1030 ± 125) were counted on
three randomly selected microscopic fields. For each
measurement, reproducibility is better than 92 %. For
dystrophin labelling, all acquisitions were performed
with the same signal amplification resulting from identi-
cal detector gain, as previously described [29]. To deter-
mine the proportion of dystrophin+ fibres, 880 ± 101
total fibres were counted (laminin red fluorescent immu-
nolabelling) in the Biceps femoris muscle sections of the
GRMDMuStem dogs (n = 3) and then the number of fibres

Table 1 Description of the fourteen male dogs included in the miRNA study

Study Dog group Number of animals Phenotype Immunosuppression MuStem cell injection

Physiopathology Healthy 5 healthy None None

GRMD 3 dystrophic None None

MuStem cell impact mock GRMD 3 dystrophic Yes None

GRMDMuStem 3 dystrophic Yes Yes
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expressing dystrophin was determined from DYS2
(Novocastra) green fluorescent immunolabelling.

miRNAs isolation and qPCR
miRNAs were extracted from muscle samples of right
and left Biceps femoris of each animal. The mirVana
miRNA isolation kit (Ambion, Austin, TX, USA) was
used, according to the manufacturer’s instructions, and
microRNAs were finally eluted with 100 μL of water and
quantified using a Nanodrop spectrophotometer
(Labtech, Wilmington Delaware, USA). Reverse Tran-
scription reactions were carried out on 5 ng of miRNAs
using the TaqMan miRNA Reverse Transcription kit
(Applied Biosystems, Foster City, CA, USA) and
miRNA-specific stem loop primers for miR-1, miR-133a,
miR-206, miR-222, and miR-486 (Applied Biosystems
miRNA assays). Real-time PCR reactions were per-
formed at least in duplicate with miRNA-specific
primers and Taqman® probes on the CFX96 PCR System
(BioRad). Data were normalized using U6 snRNA
(RNU6B) as an internal control and differential expres-
sion was calculated using the 2-ΔΔCt method. For each
miRNA, statistical differences between two groups were
analysed by a Mann–Whitney test.

In situ hybridization
In situ hybridization (ISH) was performed on muscles
from healthy, GRMD, mock GRMD and GRMDMuStem

dogs, using digoxigenin (DIG)-labelled miRCURY locked
nucleic acid (LNA) detection probes (Exiqon, Vedbaek,
Denmark), corresponding to hsa-miR-486 (38596–05),
hsa-miR-206 (88081–15) and scramble-miR (99004–05
and 99004–15). Ten μm-thick frozen muscle sections
were air-dried for 1 h and fixed for 10 min in 4 % para-
formaldehyde. Then, the sections were permeabilized
with proteinase K (20 μg/mL) for 10 min. For pre-
hybridization, the tissue sections were covered for 1 h
with hybridization buffer containing 50 % formamide,
4X SSC, 1X Denhardt’s solution, 500 μg/mL salmon
sperm DNA (Sigma-Aldrich, Saint Quentin Fallavier,
France), 10 % dextran sulfate and 1X Blocking Reagent
(Roche, Basel, Switzerland). For hybridization, 50 nM of
DIG-labelled probes diluted in hybridization buffer were
applied per section and incubated in a sealed humidified
chamber for 16 h at 55 °C. A stringency wash was per-
formed for 30 min in 50 % formamide/1X SSC, followed
by two 0.2X SSC washes for 15 min each. Sections were
then incubated with alkaline phosphatase-conjugated
sheep anti-DIG (1/1000, Roche) antibody for 2 h. Hy-
bridized probes were visualized by color reaction with
nitro-blue tetrazolium (NBT) and 5-bromo 5-chloro-3-
indolyl phosphate (BCIP) overnight at 4 °C. Slides were
counterstained with Nuclear Fast Red and mounted in a
Vectamount mounting medium (Vector Laboratories,

Burlingame, USA). In situ analysis was carried out by
one “blinded” reader and one non-“blinded” reader,
yielding comparable results. No signal was detected
using scrambled control probes.

Western Blot
For protein extraction, muscles were homogenized in
RIPA lysis buffer containing 150 mM NaCl, 50 mM
Tris–HCl pH 7.4, 1 % Nonidet-P40, 1 % glycerol, 1 mM
EDTA and protease inhibitors using the Precellys
(Ozyme, France) (2 × 10 s, 6500 rpm). Homogenates
were centrifuged at 10,000 g to pellet debris and super-
natants were centrifuged at 20,000 g (45 min, 4 °C). Pro-
tein concentration was determined using a BCA protein
assay (Sigma-Aldrich). Fifty μg of proteins of tissue hom-
ogenate were resolved by sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE) on 4–12 %
polyacrylamide gels (NuPage, Life Technologies, Illkirch,
France) and electroblotted onto nitrocellulose mem-
branes (Protran BA 83, GE Healthcare) using a Bio-Rad®
liquid blotting system at 30 mA for 2 h. The membranes
were blocked using 50 % Blocking Buffer (Odyssey®, Li-
Cor Biosciences, Lincoln, NE, USA) in PBS (1 h, room
temperature) and incubated overnight at 4 °C with pri-
mary antibodies against myosin heavy chain (MHC) MF-
20 (1/1000, Developmental Studies Hybridoma Bank
/DSHB, Iowa City, IA, USA), α-actinin (1/1000, Sigma-
Aldrich), MYH7 (1/5000, Abcam, Cambridge, MA,
USA). After washing with Tween 0.1 % in PBS, the blots
were incubated with horseradish peroxidase-conjugated
or fluorophore-conjugated anti-mouse and anti-rabbit
secondary antibody. After washing, the samples were
coverslipped with Mowiol Mounting Medium (Calbio-
chem EMD Biosciences, San Diego, CA, USA) and
scanned with a blue 488 nm argon ion laser using the
C1 inverted Nikon TE-2000 laser scanning confocal
microscope (Nikon, Champigny, France). Equal protein
loading was checked through α-actinin labelling and
Ponceau S staining of the membranes.

Results
Differential miRNA expression level in GRMD dog muscle
The expression levels of five miRNAs in healthy and
GRMD dog muscles were investigated to determine
whether miRNAs (previously shown to be differentially
expressed in skeletal muscle of DMD patients and mdx
mice) display the same deregulations in the clinically
relevant dog model. The generated data are normalized
to RNU6B, which is an internal control RNA frequently
used in miRNA expression studies, yielding an average
Ct of 30.89 ± 0.93 (SD) for the whole set of tested sam-
ples (Additional file 1: Fig. S1). In the dystrophic con-
text, we observe a markedly increased expression of
miR-222 (p = 0.03) and a tendency to decreased
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expression of miR-486 (p = 0.14) (Fig. 1a). On the other
hand, miR-1, miR-133a, miR-206 expression levels are
unchanged in GRMD dogs.

miRNA cellular localization in GRMD dog muscle
To complete our PCR-based observations, we investi-
gated the subcellular and tissue localization of the

Fig. 1 a Relative expression levels of miRNAs in dog muscle. Expression levels of miR-1, miR-133a, miR-206, miR-222 and miR-486 were determined in
9-month-old healthy (n = 5) and GRMD (n = 3) dog muscle by real-time PCR and were normalized to RNU6B levels. Results are indicated as relative
expression and are presented as mean ± SEM. *p < 0.05. b miR-206 and miR-486 localization in healthy and GRMD dog skeletal muscle. The tissue
localization was assayed by in situ hybridization on Biceps femoris muscle cryosections derived from healthy and GRMD dogs, using digoxigenin
labelled LNA probes. Representative images are shown. Upper panel: miR-206 expression. In healthy dog muscle, miR-206 expression is detected in
cytoplasmic processes of vessel endothelial cells (black arrow) and around some peripheral nuclei (empty arrow head) of muscle fibres. In GRMD dog
muscle, a strong signal is detected in myoblasts (black arrow head) and regenerating MyHCd+ fibres (asterisk). Lower panel: miR-486 expression. In
healthy dog muscle, miR-486 is detected both in endothelial cells (black arrow) and around peripheral nuclei (empty arrow head). In GRMD dog muscle,
miR-486 is localized in myoblasts (black arrow head) and regenerating fibres (asterisk). Scale bar = 25 μm
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miRNAs in a dystrophic context by using ISH. We suc-
cessfully performed in situ exploration of two of the five
miRNA tested: miR-206, a key modulator of skeletal
muscle development and disease, and miR-486, an im-
portant factor in the regulation of DMD muscle path-
ology (Fig. 1b). In healthy dog muscle, miR-206 and
miR-486 are expressed around some peripheral nuclei of
fibres as well as in endothelial cells. Furthermore, most
of the fibres display a perinuclear miR-486 signal. Inter-
estingly, in GRMD dogs, miR-206 and miR-486 are
mainly localized in newly formed myoblasts and regener-
ating fibres, as demonstrated by MyHCd+ labelling on
serial sections. Unfortunately, we failed to detect signifi-
cant signal for miR-222 and miR-133a.

Clinical and tissue consequences of the intravenous
delivery of MuStem cells
In the context of the allogeneic transplantation protocol,
GRMDMuStem dogs and mock GRMD dogs were both
submitted to immunosuppression. To determine
whether cyclosporine treatment on its own can modify
the miRNA profile, the expression levels were first deter-
mined in GRMD dogs with or without immunosuppres-
sion. We observe no significant change except for miR-
206, which is increased under our immunosuppressive
regimen (p = 0.07) (Fig. 2). Interestingly, even though
miR-206 expression is modified, its subcellular
localization remains unchanged (data not shown here).
Mock GRMD dogs display a progressive clinical im-

pairment characterized at 9 months age by a clinical
score of 43.5 % ± 25.2. By contrast, all GRMDMuStem

dogs display an early and persistent stabilization of their
clinical score that is maintained above 80.9 % ± 9.3 at
the same age. Repeated-measures ANOVA carried out
from 7.5 to 8.5 months of age indicates a trend towards
a positive effect of the MuStem cell delivery (F = 3926; p
= 0.059) (Additional file 2: Fig. S2). Regenerative activity
is also assessed on muscle sections using a specific
MyHCd labelling. While 12.9 % ± 5.3 of the fibres ex-
press this developmental isoform in mock GRMD dog
muscle, the proportion of MyHCd+ fibres is 20.5 % ± 3.9
in GRMDMuStem dogs, thus demonstrating a tendency to
an increased muscle regenerative activity following MuS-
tem cell delivery (Fig. 3a).
Immunofluorescent labelling of dystrophin in the Bi-

ceps femoris muscle shows no expression of this protein
in mock GRMD dogs, apart from some rare positive fi-
bres corresponding to revertant fibres. Muscle sections
of GRMDMuStem dogs are characterized by a very low ex-
pression level of dystrophin compared to that observed
in healthy dog muscle (Fig. 3b). Fibres observed in
healthy dog are defined by a high fluorescent labelling
intensity as well as by continuous labelling all along the
fibre membrane. On the contrary, the limited dystrophin
expression observed in GRMDMuStem dog muscle is il-
lustrated by a discontinuous labelling along the mem-
brane and is restricted at the most to 14.4 % of all fibres
(Fig. 3b).

Modified muscle miRNA expression following MuStem
cell transplantation
The expression level of five miRNAs was investigated on
the GRMDMuStem dogs to determine whether cell trans-
plantation could have an impact on their expression. We
show that miR-133a (p = 0.03) and miR-222 (p = 0.03)
are up-regulated in GRMDMuStem dogs compared to
mock GRMD dogs (Fig. 4a), while miR-1, miR-206 and
miR-486 expressions appear unchanged. In terms of tis-
sue distribution, the ISH carried out on the Biceps
femoris muscle of GRMDMuStem dog reveals an expres-
sion of miR-486 and miR-206 on clustered MyHCd+ re-
generative fibres (Fig. 4b), which confirms previous
findings [33, 34] and reinforces the hypothesis whereby
these two miRNAs are unaffected by the infusion of
cells. Lastly, while miR-222 is up-regulated in GRMD
versus healthy dog muscle, it is found to be even more
up-regulated in GRMDMuStem versus mock GRMD dog
muscle (p = 0.03) (Fig. 4a). To corroborate this result, we
investigated the protein abundance of miR-222 targets
(sarcomeric proteins: myosin heavy chain (MHC) and
MYH7). We observe a decrease in sarcomeric myosin
heavy chain proteins expression in GRMDMuStem dog,
reflecting the inhibition of sarcomeric protein accumula-
tion concordant with miR-222 overexpression [20]
(Fig. 5a and b).

Fig. 2 Relative expression levels of miRNAs in GRMD dog muscle
under immunosuppressive regimen. Expression levels of miR-1,
miR-133a, miR-206, miR-222 and miR-486 were determined in
muscles (right and left Biceps femoris) of three 9-month-old GRMD
and six mock GRMD dog by real-time PCR and normalized by RNU6B
levels. Results are indicated as relative expression and are presented
as mean ± SEM
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Discussion
miRNAs are considered as integral components of the
regulatory circuitry for myogenesis, even if their full role in
muscle growth and development remains to be elucidated
[13–15, 18]. Numerous studies provide increasing evidence
for the involvement of miRNAs in myopathies, and particu-
larly in muscular dystrophies [22, 23, 35]. It has been re-
cently reported that miRNAs are promising biomarkers for
monitoring disease progression [28, 36, 37]. In this regard,
several serum miRNAs have been identified as dysregulated
in GRMD dogs, using a high-throughput miRNA sequen-
cing screening [28]. Based on the clinical relevance of the
animal model used, these results have allowed authors to
select these miRNAs as candidate biomarkers for DMD pa-
tients. In addition, it is increasingly acknowledged that miR-
NAs could represent useful tools in the assessment of
experimental therapies to cure muscle diseases [25, 28, 38].
Nevertheless, further investigations need to be conducted

to identify the role of these dysregulated miRNAs in muscle
pathophysiology.
Up to now, most of the results presented on muscle

miRNAs have been obtained from the mdx mouse
model, which is known to show limitations for the study
of pathogenetic mechanisms and therapeutic trials spe-
cific to DMD. For this reason, we aim at establishing, for
the first time, a description of miRNA dysregulations in
GRMD dog skeletal muscle based on a dedicated set:
miR-1, miR-133a, miR-206, miR-222 and miR-486. In ac-
cordance with previous observations made in the mdx
mouse model and DMD patients [10, 22, 25, 26], we find
that miR-222 and miR-486 exhibit a marked up-
regulation and a down-regulation in 9-month-old
GRMD dog muscle, respectively. On the contrary, RT-
qPCR performed on Biceps femoris muscle extract fails
to reveal any dysregulation of miR-206, in contrast with
the previously described up-regulation in both the mdx

Fig. 3 a MyHCd immunolabelling in healthy, mock GRMD and GRMDMuStem dogs. Transverse cryosections of the Biceps femoris muscle of
9-month-old healthy, mock GRMD and GRMDMuStem dogs. Scale bar = 50 μm. b Dystrophin immunolabelling in healthy, GRMD and GRMDMuStem

dogs. Transverse cryosections of the Biceps femoris muscle of 9-month-old healthy, mock GRMD and GRMDMuStem dogs. The laminin (red) and
dystrophin (green) fluorescent immunolabellings are presented. Scale bar = 200 μm
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Fig. 4 (See legend on next page.)
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mouse model and DMD patients [10, 22, 25, 26]. Never-
theless, up-regulation of miR-206 is not observed in all
dystrophic muscles. Indeed, McCarthy et al. demon-
strated that miR-206 is overexpressed in the most se-
verely affected mdx muscles, i.e. the diaphragm, but not
in the hindlimb [27]. In addition, Yuasa et al. showed a
decreased expression of this miRNA in the CXMDJ tibi-
alis anterior muscle compared to the control [26]. Our
results support Yuasa’s hypothesis that increased expres-
sion of miR-206 in mdx muscle may reflect active and
efficient regeneration, whereas its decreased expression
in CXMDJ muscle may illustrate relatively exhausted re-
generation potential [26]. In the present study, we use in
situ detection to obtain original information concerning
the muscle tissue distribution of the miRNAs, thus im-
proving the characterization of their tissue expression.
Combined in situ hybridization and MyHCd labelling
demonstrate that miR-206 is histologically related to
muscle fibre regenerative processes in GRMD dog, being
mainly expressed in newly formed fibres. Interestingly,
this distribution has been previously reported in mdx
muscles [10, 26] that have considerable regenerative cap-
acity [39, 40].
While we describe here the expression patterns of a

miRNA subset, further studies are required to under-
stand the implication of miRNAs in the pathophysiology
of GRMD dog. In this paper, we show that a continuous

cyclosporine-based immunosuppressive regimen main-
tained over a period of 5 months does not lead to a
major modification of the investigated miRNAs levels,
except for miR-206 that tends to increase. This result
highlights a selective impact of immunosuppression
treatment on the expression levels of miRNAs, thus
strongly suggesting that the immunosuppressive compo-
nent must be considered in the assessment of allogeneic
cell-based preclinical studies requiring the use of im-
munosuppression [41].
In the present study, we attempt to determine whether

the systemic delivery of MuStem cells, which increases
muscle regenerative activity and stabilizes the clinical
status of GRMD dogs [29], can concomitantly affect the
expression levels of miRNAs that are able to modulate
key cellular processes at a post-transcriptional level. This
hypothesis seems particularly interesting because the ob-
served clinical and tissue benefits following MuStem cell
infusion are linked to a low dystrophin protein level as
well as a limited percentage of dystrophin-positive fibres,
clearly evoking the implication of other molecular path-
ways [29, 30]. Firstly, it is surprising that the expression
levels of miR-206 and miR-486 (two miRNAs known to
be implicated in the regenerative process) are not up-
regulated in transplanted GRMD dogs. It could be hy-
pothesized that the increased regenerative potential re-
vealed in GRMDMuStem dogs 4 to 5 months after

(See figure on previous page.)
Fig. 4 a Modulation of miRNA levels in GRMD dog muscles after systemic administration of MuStem cells. Expression levels of miR-1, miR-133a,
miR-206, miR-222, and miR-486 were determined in muscles (right and left Biceps femoris) of six 9-month-old GRMDMuStem dogs compared to six
mock GRMD dogs. RNU6B was used as internal control and relative expressions are presented as mean ± SEM. *p < 0.05. b miRNA localization in
GRMD dog muscle after MuStem cell transplantation. Upper panel: miR-206 expression. Lower panel: miR-486 expression. miR-206 and miR-486
are detected in myoblasts (black arrow head) and in the cytoplasm of small and intermediate regenerating MyHCd+ fibres (asterisk). Scale bar = 25 μm

Fig. 5 a MHC and MYH7 protein expressions in mock GRMD compared to GRMD dog after MuStem cell transplantation. a Representative
western blot analyses. α-actinin is used as control. b Graphical representation of immunoblot analyses in three mock GRMD and GRMDMuStem

samples. The mean fluorescence intensity is represented along with the SEM (standard error of the mean) for the different samples
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transplantation is not sufficient to be associated with a dif-
ferential expression of miR-206. Secondly, we demonstrate
an up-regulation of miR-133a and miR-222 expression
after systemic delivery of MuStem cells. Interestingly,
changes of these miRNAs are reported to be implicated in
the disruption of sarcomere organization [20, 42]. Expres-
sion of miRNA-222 in myoblasts induces myogenin ex-
pression followed by inhibition of sarcomeric protein
accumulation. Our finding on the down-expression of two
sarcomeric proteins MYH7 and MHC in GRMDMuStem

muscle suggests that miR-133a and miR-222 could be in-
volved in the remodelling of the sarcomeric assembly, thus
preventing the accumulation of sarcomeric component
aggregates observed in dystrophic muscle. Moreover, the
pathway analysis performed to provide functional annota-
tion based on KEGG terms (DIANA-miRPath) shows an
enrichment of miR-133 in many pathways linked to ubi-
quitin mediated proteolysis as well as regulation of the
actin cytoskeleton. Also, this indicates that miR-222 is in-
volved in the molecular pathways linked to the cell cycle,
the insulin signalling pathway and ubiquitin mediated
proteolysis.
These observations corroborate our previous study

[30] in which we demonstrated that systemic administra-
tion of MuStem cells greatly enhances ubiquitin-
mediated protein degradation and induces insulin resist-
ance in skeletal muscle.

Conclusion
In the present study, we characterize the muscle expres-
sion pattern of five relevant miRNAs in the GRMD dog
model. Interestingly, we define a specific global miRNA
signature distinct from those found in the mdx mouse
model but also in DMD patients. In addition, we establish
that MuStem cell infusion is characterized by an up-
regulation of both miR-133a and miR-222, positioning
them as potential useful markers to assess the efficacy of a
cell-based strategy. Further functional studies and target
exploration should be carried out to improve our under-
standing of the links with MuStem cell-associated effects.
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