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Abstract
Background Alamandine is a newly characterized peptide of renin angiotensin system. Our study aims to investigate 
the osteo-preservative effects of alamandine, explore underlying mechanism and bring a potential preventive 
strategy for postmenopausal osteoporosis in the future.

Methods An ovariectomy (OVX)-induced rat osteoporosis model was established for in vivo experiments. Micro-
computed tomography and three-point bending test were used to evaluate bone strength. Histological femur slices 
were processed for immunohistochemistry (IHC). Bone turnover markers and nitric oxide (NO) concentrations in 
serum were determined with enzyme-linked immunosorbent assay (ELISA). The mouse embryo osteoblast precursor 
(MC3T3-E1) cells were used for in vitro experiments. The cell viability was analysed with a Cell Counting Kit-8. We 
performed Alizarin Red S staining and alkaline phosphatase (ALP) activity assay to observe the differentiation status 
of osteoblasts. Western blotting was adopted to detect the expression of osteogenesis related proteins and AMP-
activated protein kinase/endothelial nitric oxide synthase (AMPK/eNOS) in osteoblasts. DAF-FM diacetate was used for 
semi-quantitation of intracellular NO.

Results In OVX rats, alamandine alleviated osteoporosis and maintained bone strength. The IHC showed alamandine 
increased osteocalcin and collagen type I α1 (COL1A1) expression. The ELISA revealed alamandine decreased 
bone turnover markers and restored NO level in serum. In MC3T3-E1 cells, alamandine promoted osteogenic 
differentiation. Western blotting demonstrated that alamandine upregulated the expression of osteopontin, Runt-
related transcription factor 2 and COL1A1. The intracellular NO was also raised by alamandine. Additionally, the 
activation of AMPK/eNOS axis mediated the effects of alamandine on MC3T3-E1 cells and bone tissue. PD123319 and 
dorsomorphin could repress the regulating effect of alamandine on bone metabolism.

Conclusion Alamandine attenuates ovariectomy-induced osteoporosis by promoting osteogenic differentiation via 
AMPK/eNOS axis.
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Introduction
Osteoporosis is a systemic disorder of bone metabolism 
characterized by deterioration of bone microarchitec-
ture, continuously decreased bone mass, increased bone 
fragility and elevated fracture risk [1]. Postmenopausal 
osteoporosis remains the most common type of osteo-
porosis that leads to fracture in millions of menopausal 
women worldwide [2]. Although estrogen deficiency is 
a major cause of postmenopausal osteoporosis, estrogen 
replacement therapy is not commonly recommended 
for osteoporosis treatment because of the potential risk 
of cardiovascular events and cancers of the breast and 
uterus [3–6].

The renin angiotensin system (RAS) is an elaborate 
endocrine system that has powerful effects on blood 
pressure and sodium homeostasis [7]. Angiotensin II 
(AngII), as the key member of classical RAS, plays a vital 
role in various biological actions [8]. Aberrant activa-
tion of AngII is related to the progression of the cardio-
vascular, renal, and liver diseases [9]. Notably, AngII was 
also found to inhibit osteogenic differentiation, provoke 
osteoclastic activity and accelerate osteoporosis in ovari-
ectomized rats [10]. ACE inhibitors (ACEIs) and angio-
tensin type 1 receptor blockers (ARBs) may help maintain 
bone mass in ovariectomized rat [10–12]. Patients who 
were treated with ACEI had lower risks of bone loss and 
fragility fractures [13]. These studies suggested that local 
RAS was involved in bone metabolism and AngII may 
be a promising therapeutic target for postmenopausal 
osteoporosis.

Alamandine is a new peptide of the non-canonical 
RAS characterized in 2013 which is generated by hydro-
lysis of Angiotensin A or decarboxylation of Angioten-
sin-(1 − 7) [14]. Alamandine and its receptor, Mas-related 
G protein-coupled receptor member D (MrgD) are now 
considered novel members of the RAS protective arm 
because of its antagonistic effect against AngII [15, 16]. 
It has been proved that alamandine has similary func-
tions with Angiotensin-(1 − 7) such as vasodilation, anti-
inflammatory and anti-fibrosis [14, 17]. Additionally, 
alamandine was reported to have the function of induc-
ing AMPK activation and nitric oxide (NO) production 
in cardiomyocytes [14, 18]. Interestingly, NO and AMPK 
were also documented to be associated with bone metab-
olism [19]. However, the role of alamandine on bone 
metabolism and postmenopausal osteoporosis remains 
unclear.

In this study, the potential effects of alamandine on 
postmenopausal osteoporosis were investigated in OVX-
induced osteoporosis rat models and the underlying 
mechanisms were explored using in vitro cell models.

Methods
Inclusion complex and drug preparation
The inclusion compound HP-β-CD/alamandine was pre-
pared for in vivo experiments as previously described 
[14]. (2-Hydroxypropyl)-β-Cyclodextrin (HP-β-CD) 
was purchased from Sigma-Aldrich (332,607, average 
Mw ~ 1,460, USA). Inclusion complex between the ala-
mandine (TGpeptide, Nanjing, China) and the HP-β-CD 
was prepared by the freeze-drying process using the 
1:1 molar ratio. An aqueous solution, using Milli-Q® 
water, of host and guest molecules was stirred for 3  h 
to ensure that equilibrium had been reached. Then, the 
solution was frozen in liquid nitrogen and lyophilized 
(LC-18  N-50  A Freeze-Dryer, LICHEN, China) for 48  h 
to obtain the solid inclusion complex and stored at -20℃ 
for later use. PD123319, the MrgD antagonist, was pur-
chased from Abcam and dissolved in distilled water for 
oral gavage.

Animals, groups, treatment and sampling
Forty 8-week-old female Sprague-Dawley rats, weight 
200-220  g, were purchased from Laboratory Animal 
Center of Nantong University, housed under the specific 
pathogen-free (SPF) conditions, and maintained under 
standard laboratory conditions (temperature, 25 ± 2℃; 
humidity, 50 ± 5%), with a 12 h:12 h light/dark cycle. All 
rats were received standard rat chow and water ad libi-
tum. Overall animal experimental designs and schemes 
were approved by Institutional Animal Care and Use 
Committee (IACUC) of Medical School, Nantong Uni-
versity (No. IACUC20220113-1002). After one week of 
adaptive feeding, a bilateral OVX (thirty rats) or sham 
operation (ten rats) was performed using standard meth-
ods. Briefly, all rats were weighed and reciprocal ovari-
ectomy was done under general anaesthesia (60  mg/
kg ketamine and 10  mg/kg xylazine). Ovaries were 
extracted through a mid-abdominal incision. For the 
sham group, only a mid‐abdominal incision was made. 
After surgery, animals were treated with Benzylpeni-
cillin Sodium (300,000 UI/kg, ip) and Flunixin Meglu-
mine (2.5  mg/kg, sc) for 3 days. Thirty OVX animals 
were randomly divided into three experimental groups: 
OVX group, OVX + alamandine group and OVX + ala-
mandine + PD123319 group, each group has ten rats. 
The OVX model rats received treatment once per day 
by oral gavage (using reusable oral gavage needles) of 
HP-β-CD (vehicle, 84  µg/Kg/day), alamandine included 
in HP-β-CD (134  µg/Kg/day, equivalent to 50  µg/Kg/
day of alamandine) or PD123319 (0.3 mg/Kg/day) mixed 
with alamandine inclusion compounds, respectively. All 
gavage drugs were dissolved in distilled water before 
treatment. After a 10-week treatment period, the rats 
were sacrificed for analysis. After euthanasia by overdose 
of ketamine, the blood sample was collected from heart 
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for serum isolation and then stored at -80℃ before use. 
The right side femur was harvested for measurement of 
bone mineral density (BMD) and bone micro-architec-
ture by micro-computed tomography (Micro-CT) prior 
to mechanical testing and left side femur samples were 
harvested for histological and immunohistochemical 
evaluation. The animal protocol is shown in Fig. 1.

Micro-computed tomography scanning and analysis
Micro-CT (SkyScan-1276 micro-computed tomography 
system, Bruker, Kontich, Belgium) was used to verify the 
osteoporotic condition of the bones. The right femurs 
were harvested and stored in -80 °C before CT scanning. 
Samples were scanned at 15 μm pixel resolution (1 mm 
aluminium filter, 85  kV, 200 µA). A total of 135 images 
were obtained from the distal region of each femur. The 
femur in Sham and OVX rats was visualized according 
to the sagittal and transverse planes by SkyScan CTVox 
software (Bruker, Karlsruhe, Germany). The analysis of 
the femur morphological parameter was evaluated by 
CTAn software (Bruker, Karlsruhe, Germany), includ-
ing percent bone volume (BV/TV), bone mineral density 
(BMD), structure model index (SMI), trabecular num-
ber (Tb.N), trabecular thickness (Tb.Th) and trabecular 
separation (Tb.Sp). According to previous research, com-
pared with cortical bone, the change of trabecular bone 
may reflect the degree or progress of osteoporosis more 
visually or directly. Therefore, we referred to some other 
studies and analysed the trabecular bone to evaluate the 
progress of bone loss in rat experiments [20–22]. SMI 
is used to characterize the degree of plate-like and rod-
like bone trabeculae, the SMI value for absolute plate-
like bone trabeculae is 0, and the SMI value for absolute 
rod-like bone trabeculae is 3. When osteoporosis occurs, 

the SMI value increases, the rod-like bone trabeculae 
increase, and the plate-like bone trabeculae decrease.

Bone biomechanical testing
After micro-CT scan, the right side femur was tested for 
bone strength by three-point bending test [23]. The bio-
mechanical testing was done using ElectroPuls E10000 
Linear-Torsion all-electric dynamic test instrument 
(INSTRON, MA, USA). The right femur was positioned 
horizontally with the anterior surface downwards, and 
the span of the two support points below the bone was 
20 mm. A displacement rate of 3 mm/min was selected 
for applying the loading vertically to mid-shaft for 
femurs. Load deformation curves were transferred to a 
personal computer and acquired by Team 490 software 
(version 4.10, Nicolet Instrument Technologies, WI, 
USA). Sigma Plot 7.0 software (Systat Software Inc, CA, 
USA) was used to smooth the load deformation curve 
and calculate the extrinsic material properties of the 
bone samples, including the ultimate load (N), ultimate 
displacement (mm), stiffness (N/mm), energy to failure 
(N•mm), bending stress (Mpa) and bending strain (a.u.).

Bone turnover markers measurement
The serum levels of osteocalcin (OCN), cross-linked 
carboxy-terminal telopeptide of type 1 collagen (CTX-I) 
and nitric oxide (NO) were measured using commercially 
available ELISA kits according to the manufacturer’s 
instructions (Nanjing Jiancheng Biological Engineering 
Research Institute, China).

Histological and immunohistochemical evaluation
For evaluation of bone histology, the left side femur was 
fixed in 4% paraformaldehyde for 48 h and then decalci-
fied in 10% ethylenediaminetetraacetic acid for 3 weeks 

Fig. 1 Animal protocol. Experimental grouping: Sham group, OVX group, OVX + alamandine group and OVX + alamandine + PD123319 group (a). Experi-
mental timeline and the schematic diagram of tissue collection and detection (b)
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before being dehydrated with gradient alcohols and 
embedded in paraffin, and 5  μm thick contiguous sec-
tions were sliced for immunohistochemistry analysis. 
For IHC staining, slides were processed by heat-induced 
epitope retrieval using microwave oven heating in 0.01 M 
citrate buffer for 10 min. The sections were incubated in 
diluted normal serum for an hour and then incubated 
with primary antibodies, including antibodies against 
OCN (1:50, AB10911, Sigma-Aldrich, USA), COL1A1 
(1:200, 72026T, Cell Signaling Technology, USA), pho-
eNOS (Ser1177, 1:500, PA5-35879, Thermo Fisher, USA) 
and pho-AMPKα (1:200, 2535T, Cell Signaling Technol-
ogy, USA) at 4 °C for 24 h. After that, the sections were 
rinsed with PBS three times and incubated with a bio-
tinylated secondary antibody (dilution 1:150) for 1  h. 
Immunoreactivity was visualized by a solution of 0.01% 
H2O2 and 0.05% diaminobenzidine that generated a 
brown colour. Nuclei were presented with haematoxylin 
staining. All slides were observed by slice digital scanning 
(Pannoramic MIDI, 3DHISTECH, Hungary).

Cell models and intervention
The mouse embryo osteoblast precursor (MC3T3-E1, 
subclone 14) cell line was obtained from the National 
Collection of Authenticated Cell Cultures (Shang-
hai, China) and routinely maintained in α-modified 
Eagle’s Minimum Essential Medium (α-MEM) complete 
medium supplemented with 10% (v/v) fetal bovine serum 
(Gibco, Life Technologies, Grand Island, NY, USA) 
and penicillin/streptomycin (pen/strep, 100 U/mL and 
100 µg/mL; Gibco, USA) at 37 °C in 5% CO2. Thereafter, 
50 µg/ml L-ascorbic acid (Sigma-Aldrich, USA), 10 mM 
β-glycerophosphate (Sigma-Aldrich, USA) and 10 nM 
dexamethasone (Sigma-Aldrich, USA) were added into 
α-MEM to induce osteogenic differentiation. Cell viabil-
ity was estimated using the Cell Counting Kit-8 (CCK-8) 
assay (HY-K0301, MedChemExpress, USA). Cells were 
seeded into 96-well plates (5,000 cells/well) with diverse 
interventions, and the blank did not contain cells. At 
24 and 48 h, the cells in each well were treated with 10 
µL CCK-8 solution and incubated at 37  °C for 1 h. Cell 
viability was calculated by measuring the absorbance at 
450  nm. Afterwards, the cells were counted and plated 
onto 6-well culture plates at a density of 1 × 105 cells/
well. Referring to CCK-8 results and previous studies 
[14, 24–26], 24  h after plating the osteoblasts, alaman-
dine (100 nM; TGpeptide, Nanjing, China), PD123319 
(1 µM, 30  min before alamandine; ab144564, Abcam, 
USA) and AMPK inhibitor compound C (dorsomorphin, 
100 nM, 30 min before alamandine; HY-13,418 A, Med-
ChemExpress, USA) were added. The culture medium 
was changed every 2 days. The groups used were: (1) 
Control, which received only medium; (2) alamandine 

(Ala); (3) alamandine + PD123319 (Ala + PD); (4) alaman-
dine + compound C (Ala + CC).

Alkaline phosphatase and alizarin Red S staining for 
mineralization
MC3T3-E1 cells were seeded in 6-well plates and cul-
tured in osteogenic induction medium with stimulation 
for 14 days. Alkaline phosphatase (ALP) staining was 
performed with a BCIP/NBT (nitro-blue tetrazolium/5-
bromo-4-chloro-3-indolylphosphate) alkaline phospha-
tase colour development kit (C3206, Beyotime, China) 
according to the manufacturer’s instructions. When the 
cells were induced for 28 days, Alizarin Red S (ARS) 
staining was performed to detect calcium deposits with 
modified Alizarin Red S stain kit for calcium (G3280, 
Solarbio, China). Stained plates were photographed using 
a digital camera. Images of stained cells were captured 
under a light microscope (BX41, Olympus, Japan) and 
five randomly selected fields (× 10 magnification) were 
photographed in each well, analysed by Image J soft-
ware (version 1.53n, National Institutes of Health, USA) 
according to previous protocol [27–29].

Western blotting
MC3T3-E1 cells were treated with various interventions 
in osteogenic medium for 48  h. After that, cells were 
lysed in lysis buffer (P0013, Beyotime, China) at 4  °C 
with protease and phosphatase inhibitors (P1045, Beyo-
time, China). The lysis mixture was centrifuged at 12,000 
× rpm for 20 min at 4  °C, and the supernatant contain-
ing cellular proteins was used in following experiments. 
The protein concentration was measured by the Bicin-
choninic Acid Protein Assay Kit (Bio-Rad, Hercules, CA, 
USA) according to the manufacturer’s protocol. Equal 
amounts (100  µg) of protein were denatured, separated 
on 8 − 12% sodium dodecyl sulphate–polyacrylamide gel 
electrophoresis (SDS-PAGE) and transferred to polyvi-
nylidene difluoride (PVDF) membranes (Millipore, Bed-
ford, MA, USA). The membranes were blocked with 5% 
BSA for 2  h at room temperature, then incubated with 
primary antibodies at 4ºC overnight. Next, membranes 
were incubated with horseradish peroxidase-conjugated 
secondary antibodies (Cell Signaling Technology, USA) 
for 1.5  h at room temperature. The primary antibodies 
used were MrgD (1:1000, ab155099, Abcam, USA), Runt-
related transcription factor 2 (RUNX2, 1:1000, 12,556 S, 
Cell Signaling Technology, USA), Osteopontin (OPN, 
1:1,000, 22952-1-AP, Proteintech, China), collagen type I 
α1 (COL1A1, 1:1000, 72026T, Cell Signaling Technology, 
USA), eNOS (1:1,000, 27120-1-AP, Proteintech, China), 
pho-eNOS (Ser1177, 1:1000, PA5-35879, Thermo Fisher, 
USA), phospho-adenosine 5‘-monophosphate-activated 
protein kinase α (Thr172, pho-AMPKα, 1:1000, 2535T, 
Cell Signaling Technology, USA), AMPKα (1:1000, 
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5831T, Cell Signaling Technology, USA), and GAPDH 
antibody (1:5000, 60004-1-Ig, Proteintech, China) used 
as loading control. The signals were visualized with ECL 
detection reagent (P0018FM, Beyotime, China) and 
semi-quantified with the Image J software (version 1.53n, 
National Institutes of Health, USA).

Intracellular nitric oxide measurements
NO levels were measured using the NO indicator 
3-Amino,4-aminomethyl-2’,7’-difluorescein, diacetate 
(DAF-FM DA, 5 µM, Beyotime, China) according to 
manufacturer’s directions. The cells were stimulated in 
osteogenic medium for 48 h and washed with PBS twice. 
Then, DAF-FM DA were added and incubated for 30 min 
at 37  °C. Changes in NO generation were visualized 
using a Leica fluorescence microscope (Leica THUNDER 
Imager, Wetzlar, Germany) and images were analysed by 
Image J software (version 1.53n, National Institutes of 
Health, USA).

Statistical analyses
Statistical analyses were performed with IBM SPSS 15.0 
statistics software (IBM Corp., Armonk, NY, USA), and 
data were presented as mean ± standard deviation (SD). 
All figures were drawn using GraphPad Prism 9.0 soft-
ware (GraphPad Software, La Jolla, CA, USA). Statisti-
cal significance among multiple groups was evaluated 
by one-way analysis of variance (ANOVA) and Tukey 
post-hoc test. Data of CCK-8 was evaluated by two-way 
ANOVA. The statistical analyses were two-side and a 
p-value of less than 0.05 was regarded as statistically 
significant.

Results
Alamandine alleviated osteoporosis and maintained bone 
strength in OVX rats
In micro-CT scanning, the sagittal and transverse slices 
clearly depicted the qualitative effects of different treat-
ment on the trabecular bone of distal femur (Fig.  2a 
and b). After treatment with alamandine for 10 weeks, 
the microarchitecture parameters BMD, BV/TV, Tb.N 
and Tb.Th were significantly higher compared with the 
OVX group (Fig. 2c and f ). The other parameters such as 
Tb.Sp, SMI were significantly lower than the OVX group 
(Fig.  2g and h). Furthermore, the three-point bending 
test showed that alamandine significantly increased the 
ultimate load, ultimate displacement, energy to failure, 
stiffness, bending stress and bending strain of the femur 
diaphysis compared with the OVX group (Fig. 2i and n). 
Meanwhile, the MrgD antagonist PD123319 blocked the 
effects of alamandine.

Alamandine suppressed bone loss and decreased the level 
of bone turnover in OVX rats
The immunohistochemistry analysis showed alaman-
dine up-regulated expression of OCN and COL1A1 in 
bone tissue of OVX-induced osteoporosis rats (Fig.  3a 
and d). The concentrations of bone turnover markers 
OCN and CTX-I in serum were higher in OVX group 
compared with sham group and alamandine reversed 
these tendencies (Fig. 3e and f ). PD123319 also inhibited 
the effects produced by alamandine. These experiments 
demonstrated that alamandine suppressed bone loss and 
decreased the level of bone turnover through MrgD in 
OVX-induced osteoporosis rats.

Alamandine increased the osteogenic mineralization 
capacity and ALP activity in osteoblasts
As shown by the CCK-8 assay, alamandine with different 
concentrations had no obvious effect on the cell viabil-
ity of MC3T3-E1 cells in certain time (Fig. 4a). Then we 
chose intermediate concentration (100 nM) of alaman-
dine to intervene cells with different concentrations of 
PD123319 and compound C. Similarly, alamandine with 
different concentrations of PD123319 did not affect the 
cell viability (Fig. 4b). However, a significant decline was 
observed in the group of alamandine with compound C 
(1 µM) (Fig.  4c). Therefore, the appropriate drug con-
centrations were selected to perform the following cell 
experiments (100 nM alamandine, 1 µM PD123319, 100 
nM compound C). The ARS and ALP staining showed 
mineralized area (%) and ALP staining positive area (%) 
of MC3T3-E1 cells in alamandine group were signifi-
cantly higher than other groups (Fig. 4d and g). Alaman-
dine of 100 nM increased the calcium nodule formation 
and the ALP activity compared to control group, while 
PD123319 (1 µM) and compound C (100 nM) inhibited 
the enhancement of osteogenic mineralization capacity 
(Fig. 4h and i).

Alamandine promoted the expression of osteogenesis 
related proteins and AMPK/eNOS in osteoblasts
Western blotting showed MC3T3-E1 cells expressed 
MrgD, which was increased by alamandine. PD123319 
inhibited MrgD, while the AMPK inhibitor compound 
C did not have such effect on MrgD (Fig. 5a and b). Ala-
mandine up-regulated the expression of osteogenic pro-
teins such as RUNX2, OPN and COL1A1 significantly 
compared with the control group, which were blocked 
by PD123319 and compound C (Fig.  5a, c and e). Ala-
mandine promoted the expression of pho-eNOS and 
pho-AMPKα, which were inhibited by PD123319 and 
compound C (Fig.  5a, f and g). These results suggested 
Alamandine combined with MrgD promoted osteogen-
esis via AMPK/eNOS axis. After confirming the activa-
tion of eNOS, we furtherly observed that alamandine 
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enhanced NO generation in MC3T3-E1 cells. Impor-
tantly, PD123319 and compound C attenuated alaman-
dine-induced NO generation in MC3T3-E1 cells (Fig. 5h 
and i), suggesting key roles of MrgD and AMPK/eNOS 
axis in NO generation.

Alamandine activated AMPK/eNOS axis and increased 
serum NO content in OVX rats
In the bone tissue, the expression of pho-eNOS and pho-
AMPKα decreased after OVX (Fig. 6a and d). Moreover, 
the serum NO concentration declined in OVX group 
(Fig.  6e). However, alamandine treatment reversed the 
trends all above in OVX rats and was also repressed by 

Fig. 2 Representative Micro-CT three-dimensional images of trabecular bone microarchitecture with quantitative results of Micro-CT and three-point 
bending test. Sagittal and transverse planes of the femur were visualized. A region of interest (ROI) with 1.5 mm height was chosen starting 0.4 mm from 
the lowest end of the growth plate to the proximal end of the femur. Three-dimensional images of the right side distal femurs (a) and the trabecular 
bone microarchitecture (b). The scale bars represent 1 mm. Quantitative results of Micro-CT analysis expressed as BMD (c), BV/TV (d), Tb.N (e), Tb.Th (f), 
Tb.Sp (g) and SMI (h). Sample size n = 6 specimens/group. Quantitative results of the mechanical properties (i–n). The histograms are ultimate load (i), 
ultimate displacement (j), energy to failure (k), stiffness (l), bending stress (m) and bending strain (n) of the femur diaphysis (cortical bone). Sample size 
n = 4 specimens/group. ***: P < 0.001, **: P < 0.01, *: P < 0.05
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Fig. 3 Effects of different treatment on the bone tissue and bone turnover markers of model rats. OCN (a) and COL1A1 (b) expression were detected 
with the sections of proximal femur (femoral head). The magnifications are × 1.5 (left parts) and × 10 (right parts), scale bars represent 1 mm and 100 μm 
respectively. Positive area (%) fold of Sham was semi-quantified by Image J software (c, d). Sample size n = 5 specimens /group. Serum concentrations of 
OCN (e) and CTX-I (f) were detected. Sample size n = 4 specimens/group. ***: P < 0.001, **: P < 0.01, *: P < 0.05
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Fig. 4 Effects of diverse intervention on cell viability and osteogenic differentiation of MC3T3-E1 cells. Cell viability under different concentrations of 
alamandine (a), PD123319 and compound C with 100 nM alamandine respectively (b, c). Sample size n = 6 wells/group. ARS staining after osteogenic 
induction for 21 days (d, e). ALP staining after osteogenic induction for 14 days (f, g). The magnification is × 10 and the scale bars represent 100 μm (e, g). 
Mineralized area (%) and ALP staining positive area (%) were used to semi-quantify the osteogenic mineralization capacity and ALP activity respectively 
(h, i). Sample size n = 5 images/group. ***: P < 0.001, **: P < 0.01, ns: P > 0.05
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Fig. 5 Effects of various interference on protein expression of MrgD, osteogenesis and AMPK/eNOS, and intracellular NO generation in MC3T3-E1 cells. 
The expression of MrgD (a, b). Representative images of osteogenic proteins (RUNX2, OPN and COL1A1) expression (a, c–e). The expression of pho-eNOS 
and eNOS (a, f). The expression of AMPKα and its phosphorylated form (a, g). The gels were cropped, the samples derive from the same experiment and 
the gels/blots were processed in parallel. The images of phosphorylated form and total amount of AMPKα and eNOS were obtained from the same mem-
branes which were stripped and re-probed respectively. Semi-quantitation of intracellular NO was performed by DAF-FM diacetate (h, i). Sample size n = 3 
images/group. The magnification is × 40 and the scale bars represent 10 μm. ***: P < 0.001, **: P < 0.01, *: P < 0.05, ns: P > 0.05
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PD123319. Results of IHC analyses and serum NO deter-
mination validated the findings in cell experiments.

Discussion
Numerous investigations reported that the local expres-
sion of RAS components such as renin, ACE-1, and 
AngII receptors in the skeletal system plays a vital role in 
local bone remodelling and participates in the progress of 
osteoporosis [10, 30, 31]. RAS inhibitors or other analogs 
may be a promising strategy for the therapy of osteoporo-
sis. Alamandine is a vasoactive peptide of the non-classi-
cal RAS combined with the receptor MrgD (Fig. 7a), and 
it shows multiple protective effects against AngII like its 
precursor Angiotensin-(1 − 7) [15]. In this study, we firstly 

used the OVX rat models to assess the effects of oral 
alamandine on the estrogen-deficiency induced osteo-
porosis. In vivo experiments revealed that alamandine 
increased osteogenic markers, downregulated bone turn-
over markers, maintained bone strength and alleviated 
progress of osteoporosis in OVX rats. In in vitro experi-
ments, we found alamandine promoted osteogenic dif-
ferentiation of MC3T3-E1 cells. In terms of mechanism, 
we confirmed that alamandine upregulated expression of 
AMPK/eNOS axis and raised intracellular NO thereby. 
Additionally, the effects of alamandine on OVX rats or 
MC3T3-E1 cells above were blocked by MrgD blocker 
or AMPK inhibitor. In conclusion, we demonstrated that 
alamandine, combined with its receptor MrgD, alleviated 

Fig. 6 Effects of different treatment on the bone tissue and serum NO of model rats. pho-AMPKα (a) and pho-eNOS (b) expression were detected with 
the sections of proximal femur (femoral head). The magnifications are × 1.5 (left parts) and × 10 (right parts), scale bars represent 1 mm and 100 μm 
respectively. Positive area (%) fold of Sham was semi-quantified by Image J software (c, d). Sample size n = 5 specimens /group. Serum concentration of 
NO (e) was detected. Sample size n = 4 specimens/group. ***: P < 0.001, *: P < 0.05
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OVX-induced bone loss by promoting osteoblast differ-
entiation via AMPK/eNOS/NO pathway (Fig. 7b).

Postmenopausal osteoporosis is the most common 
form of osteoporosis associated with significant mor-
bidity, mortality, deterioration in the quality of life and 
financial costs [3]. Estrogen deficiency is the main cause 
of postmenopausal osteoporosis. Estrogen can promote 
early osteoblast differentiation, stimulate collagen for-
mation, and inhibit osteoclast activity [32]. Therefore, 
estrogen deficiency in postmenopausal women often 
causes attenuated osteogenic differentiation, increased 
osteoclast activity and bone turnover rate, which lead to 
increased bone resorption, decreased calcium salt depo-
sition and bone mineral density [33]. Although estrogen 

replacement therapy can prevent bone loss to some 
extent, long-term estrogen treatment has various side-
effects including breast tumors [4]. Accordingly, it is of 
great significance to explore new, safe and effective drugs 
for the treatment of postmenopausal osteoporosis. Our 
study preliminarily confirmed that alamandine could 
promote osteogenic differentiation, decrease bone turn-
over rate, and delay bone loss. In addition, it has previ-
ously been observed that alamandine has multi-system 
effects such as vasodilation, anti-inflammatory and anti-
fibrosis [14, 34]. Moreover, no significant side-effects 
or adverse effects on animal health of alamandine have 
been found in the former research. As a physiologically 
existing active peptide, it has a relatively good biological 

Fig. 7 Classical vs. protective arm of the renin-angiotensin system (a). Alamandine combined with its receptor MrgD, attenuates OVX-induced osteopo-
rosis by promoting osteogenic differentiation via AMPK/eNOS axis (b)
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safety [14], thus alamandine is expected to be a comple-
mentary treatment for postmenopausal osteoporosis at 
current stage.

NO is a biologically active neurotransmitter produced 
from L-arginine catalysed by three nitric oxide synthase 
(NOS) isoforms: endothelial NOS (eNOS), neuronal 
NOS (nNOS) and inducible NOS (iNOS) [35]. eNOS-
derived NO increases osteoblastic bone formation [36] 
and directly inhibits osteoclast-mediated bone resorption 
[37]. The low level of NO can lead to enhanced cytokine 
induced bone resorption which is strongly associated 
with osteoporosis in postmenopausal estrogen deficient 
women [38]. Estrogen supplementation can prevent post-
menopausal osteoporosis and exert a protective effect on 
bone tissue by promoting the release of NO from osteo-
blasts and osteoclasts [39]. Previous research revealed 
that the protective effect of estrogen on cardiovascular 
system is partially achieved by promoting the release of 
NO in vascular endothelium to dilate blood vessels [39]. 
We speculated that alamandine and estrogen may share 
many similarities in their biological effects because ala-
mandine can also induce NO generation in the car-
diovascular system, cause vasodilation and inhibiting 
cardiac hypertrophy [14, 24]. Alamandine has vasodila-
tory properties in the mouse vasculature, suggesting a 
signalling cascade linked to the stimulation of endothe-
lial nitric oxide synthase (eNOS) in vascular endothelium 
[40]. Consequently, we supposed the relevant mechanism 
is also likely to play a role in regulating bone loss and 
conducted related experiment to verify our hypothesis.

AMP-activated protein kinase (AMPK) appears to be 
the main target for alamandine-induced NO formation 
[24]. Previous studies have shown that AMPK can regu-
late the differentiation and function of bone cells, and the 
mice with AMPKα or β subunit knockout developed a 
decline in bone volume [41–43]. Kanazawa et al. found 
the metformin promoted osteogenic differentiation by 
activating AMPK to increase the expression of eNOS 
[44]. In addition, metformin can stimulate osteogen-
esis in MC3T3-E1 cells, and the pro-osteogenic effect is 
reversed by inhibitor of AMPK, the compound C (dor-
somorphin) [45]. Similar to previous research, we spec-
ulated and confirmed that alamandine binding with its 
receptor MrgD, can attenuate osteoporosis progression 
by regulating NO generation via AMPK/eNOS pathway.

Our study provided evidence that the AMPK and 
eNOS/NO system mediated the regulation of osteogenic 
differentiation by alamandine. In fact, the pathways by 
which alamandine produces nitric oxide are not unique 
[46]. PD123319, the MrgD antagonist, is also consid-
ered an angiotensin II type II receptor (AT2R) antagonist 
[47], although alamandine has rarely been reported as 
an AT2R ligand. Compound C may also inhibit the bone 
morphogenetic protein (BMP) signalling [48] which is 

associated with osteogenesis [49]. Besides the decreased 
osteogenesis, increased osteoclast activity is responsible 
for the elevated bone turnover rate in postmenopausal 
osteoporosis [50]. Previous studies reported that Angio-
tensin-(1 − 7) inhibited osteoclast differentiation [51, 52], 
and repressed osteoclastogenesis factors such as cathep-
sin K and MMP9 in RAW 264.7 cells via p38/ERK path-
way [53]. These remind us that alamandine may also 
regulate osteoclast function, which needs to be clarified 
in subsequent studies. At last, we adopted the oral dose 
of alamandine in rats just according to methods reported 
previously in other diseases [14]. The most appropriate 
therapeutic dose of alamandine for osteoporosis is worth 
exploring, which have implications for subsequent stud-
ies and clinical translation.

In summary, the present study provided the evidence 
that alamandine stimulated the eNOS to regulate NO 
generation via activation of AMPK. Alamandine can 
attenuate the postmenopausal osteoporosis progres-
sion in OVX rats, and it may bring a potential preventive 
strategy for postmenopausal osteoporosis in the future.
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