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to arise from a combination of heightened physical activ-
ity and an aging demographic [2].

The categorization of ankle fractures often leans on the 
severity of the injury, which inherently dictates the cor-
responding therapeutic strategy. Mild fractures, charac-
terized by minor cracks, may sometimes elude detection 
on standard X-rays. For these, the RICE protocol (Rest, 
Ice, Compression, and Elevation) combined with immo-
bilization using a brace or cast is frequently the cho-
sen course of treatment [3]. Moderate fractures, which 
stand as an intermediate category, can demand longer 
immobilization durations and occasionally minor surgi-
cal interventions. This is especially true when the injury 
is accompanied by a minor dislocation or indicates 
more profound structural disruption [4]. In contrast, 
severe fractures, which are marked by substantial bone 

Introduction
Overview of ankle fractures
Ankle fractures are traumatic injuries that predominantly 
afflict the lower extremities. Recent epidemiological data 
reveals that ankle fractures account for roughly 15% of 
all adult fractures each year, showcasing their significant 
incidence rate [1]. These injuries are commonly attrib-
uted to a twisting or rolling motion of the ankle. The 
increasing global prevalence of such injuries is speculated 
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Abstract
Background  Ankle fractures are prevalent injuries that necessitate precise diagnostic tools. Traditional diagnostic 
methods have limitations that can be addressed using machine learning techniques, with the potential to improve 
accuracy and expedite diagnoses.

Methods  We trained various deep learning architectures, notably the Adapted ResNet50 with SENet capabilities, 
to identify ankle fractures using a curated dataset of radiographic images. Model performance was evaluated using 
common metrics like accuracy, precision, and recall. Additionally, Grad-CAM visualizations were employed to interpret 
model decisions.

Results  The Adapted ResNet50 with SENet capabilities consistently outperformed other models, achieving 
an accuracy of 93%, AUC of 95%, and recall of 92%. Grad-CAM visualizations provided insights into areas of the 
radiographs that the model deemed significant in its decisions.

Conclusions  The Adapted ResNet50 model enhanced with SENet capabilities demonstrated superior performance 
in detecting ankle fractures, offering a promising tool to complement traditional diagnostic methods. However, 
continuous refinement and expert validation are essential to ensure optimal application in clinical settings.
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displacement, invariably necessitate surgical procedures 
to realign the bones and stabilize the joint. Recovery 
from such fractures usually entails rigorous rehabilitation 
to recover complete function and avoid potential compli-
cations [5].

Distinguishing ankle fractures from other potential 
injuries, such as sprains, is a nuanced and often chal-
lenging endeavor. Conventional X-rays are the primary 
diagnostic tool for these fractures. However, their sensi-
tivity, especially concerning potential hairline fractures 
or occult injuries, is not foolproof. In scenarios where the 
X-rays yield inconclusive results, other imaging modali-
ties, like computed tomography (CT) scans or magnetic 
resonance imaging (MRI), are employed to facilitate a 
more definitive diagnosis [6].

The adverse outcomes stemming from inadequately 
diagnosed or untreated ankle fractures cannot be under-
stated. Beyond the immediate pain and functional 
impairment, these fractures, if misdiagnosed, can be a 
precursor to conditions such as post-traumatic arthritis 
[7]. This, in turn, can severely hamper mobility and might 
necessitate more aggressive interventions in the long run. 
The cumulative impact of such oversight not only exacer-
bates the physical ailment but also intensifies the psycho-
logical and economic burdens on the affected individuals.

Overview of using machine learning and CNNs for ankle 
fractures diagnosis
Despite advances in imaging technology and treatment 
options, the diagnosis of ankle fractures remain challeng-
ing. One potential solution to this problem is the use of 
machine learning algorithms to assist in the diagnosis 
and classification of ankle fractures. Machine Learning is 
a field of artificial intelligence (AI) that uses algorithms 
and techniques to enable machines to learn from data 
rather than being explicitly programmed [8]. It involves 
algorithms that can detect patterns in data, classify data, 
and make predictions [9]. The methods used to imple-
ment Machine Learning are known as Machine Learning 
methods, which include supervised learning, unsuper-
vised learning, semi-supervised learning, reinforcement 
learning, and deep learning [10]. Machine learning (ML) 
methods have become increasingly popular in various 
application areas [11], with Random Forest (RF), Sup-
port Vector Machine (SVM), eXtreme Gradient Boosting 
(XGBoost) and Convolutional Neural Networks (CNNs) 
being some of the most commonly used [12].

The use of machine learning in orthopaedics is becom-
ing more and more widespread, as demonstrated by the 
research of Lalehzarian et al. (2021) [13]. In particular, 
the application of machine learning to the diagnosis and 
treatment of ankle fractures is gaining traction [14, 15]. 
By utilizing patient data and imaging scans, machine 
learning algorithms can accurately predict the probability 

of an ankle fracture and its severity. Moreover, machine 
learning can be used to monitor the healing process and 
create personalized treatment plans. This can result in 
shorter recovery times and better outcomes for patients, 
as it allows doctors to customize their approach to the 
specific needs of the patient. To date, convolutional neu-
ral networks (CNNs) have been widely applied to medi-
cal image recognition, with Yang et al. (2022) proposing 
a two-stage CNN to detect scaphoid fractures [16]. Jader-
berg et al. (2014) developed methods to reduce the com-
putational cost of CNNs, allowing for greater deployment 
of these powerful models [17]. Kitamura et al. (2019) 
attempted to train CNN models de novo using a small 
dataset of 596 normal and abnormal ankle cases [18]. 
Derkatch et al. (2019) used twelve 742 routine clinical 
Vertebral Fracture Assessment (VFA) images for CNN 
training and testing [19]. Sinha et al. (2020) used radio-
graphs obtained from 1050 patients with ankle fracture 
and the same number of healthy individuals to train 
deep convolutional neural networks (DCNNs) for dim-
ple detection and segmentation in Titanium alloys [20]. 
However, the challenge of using CNNs for ankle frac-
ture identification lies in the complexity of the task, as 
well as the need for a large and diverse dataset of images 
that represent a wide range of ankle fracture types. Addi-
tionally, the model must be able to generalize to unseen 
examples and provide reliable and accurate predictions in 
order to be useful in clinical practice.

In light of recent advancements in deep learning for 
ankle fracture detection, studies [21] and [22] have dem-
onstrated the efficacy of employing deep convolutional 
neural networks (DCNNs) with radiographic images. 
Study [21] reported a high sensitivity of 98.7% and speci-
ficity of 98.6% using Inception V3 and ResNet-50 on 
radiographs, emphasizing the potential of DCNNs to 
accurately identify fractures from multiple views. Simi-
larly, study [22] achieved notable accuracy and AUC val-
ues (up to 90%/0.95) in detecting ankle fractures using 
X-rays, further validating the capability of deep learning 
models in enhancing diagnostic precision with accurately 
labeled datasets.

Research purposes
In light of the prior studies which have predominantly 
utilized CNNs in medical image recognition, our inten-
tion is to embark on a more nuanced approach. By 
employing the ResNet50 model, enriched with the capa-
bilities of the Squeeze-and-Excitation Network (SENet), 
we aim to establish a model that is tailored to the specific 
challenges posed by ankle fracture identification. More-
over, recognizing that a model’s true efficacy is gauged by 
its capacity to generalize across unfamiliar samples and 
consistently produce dependable results, our research 
will juxtapose our adapted ResNet50 model against the 
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original ResNet50 model and the EfficientNetB5 model. 
This comparative analysis seeks to discern the most adept 
classification model that can seamlessly be integrated 
into clinical practices.

Furthermore, our research will not solely be confined 
to the realm of classification. To amplify the diagnostic 
precision, we will integrate Grad-CAM technology, intro-
ducing a heatmap functionality. This innovative feature 
aims to pinpoint the exact regions of pathology, ensuring 
that medical professionals are equipped with a compre-
hensive understanding of the fracture’s characteristics.

Methods
Data collection
In this study, we adopted a meticulous approach to data 
acquisition, leveraging a collaborative partnership with a 
local hospital to access their archive of ankle CT images. 
These single-channel, grayscale DICOM images, stan-
dardized at a resolution of 512 × 512 pixels and spanning 
three distinct views, formed the crux of our dataset. To 
ensure data quality, each image underwent stringent vet-
ting by a panel of orthopedic experts. Out of numerous 
images evaluated, 987 were deemed apt for our research, 
segmented into 255 images depicting fractures and 732 
illustrating normal ankles. Having secured permissions 
from the hospital, we synchronized with the medical 
staff to cull images that encapsulated both quality and 
relevance to ankle fractures. Once curated, these images 
were uniformly converted to the DICOM format and 
stored securely. Each image was then evaluated for diag-
nostic accuracy, with our panel of physicians distinguish-
ing them into fractured or normal categories.

In this study, we elected to utilize CT images as the pri-
mary source for ankle fracture identification, considering 
their superior detail and three-dimensional reconstruc-
tion capabilities. CT scans offer enhanced clarity in delin-
eating complex anatomical structures and are invaluable 
in cases where radiographic images may yield inconclu-
sive results. The choice was also influenced by the stan-
dardized nature of our CT image dataset, which aids in 
model training by providing consistent image quality and 
dimensions. While radiographs are a fundamental tool 
in orthopedic diagnosis, their variability and the subtlety 
of certain fractures present significant challenges for 
automated analysis. This approach aligns with our goal 
to enhance the precision of fracture identification using 
machine learning, acknowledging the pivotal role of both 
CT scans and radiographs in clinical assessments.

Central to our research ethics, informed consent was 
paramount. Participants were briefed comprehensively 
about the study’s scope, potential risks, and benefits, 
ensuring their explicit consent before incorporating their 
images into our dataset.

The proposed system
In this study, we introduce a structured approach to 
enhance the diagnosis of ankle fractures using machine 
learning techniques integrated with medical imaging, as 
shown in Fig. 1. The initial phase involves obtaining CT 
images of ankle fractures, followed by a critical pre-pro-
cessing step to standardize and refine the dataset. This 
pre-processed data is then partitioned into a training set 
(60%, 591 images), test set (20%, 198 images), and valida-
tion set (20%, 198 images) to ensure robust model train-
ing and evaluation.

A critical aspect of our dataset preparation was ensur-
ing that images from the same patient were exclusively 
allocated to one cohort—training, testing, or validation—
to prevent data leakage and uphold the integrity of our 
model’s evaluation. This allocation strategy was integral 
to our methodical approach, safeguarding the validity 
of our findings and the reliability of our deep learning 
model for ankle fracture identification.

The heart of our system lies in the application of 
Convolutional Neural Networks (CNNs), specifically 
utilizing the ResNet50 architecture. To address the 
challenges specific to ankle fracture identification, we 
augment ResNet50 with the Squeeze-and-Excitation 
Network (SENet), aiming for enhanced feature extrac-
tion. For a comprehensive analysis, the performance of 
the augmented ResNet50 is contrasted with the standard 
ResNet50 and EfficientNetB5 models, determining the 
most suitable model for clinical implementation.

Furthering diagnostic precision, we incorporate Grad-
CAM technology into our system. This addition facili-
tates a heatmap visualization, pinpointing the exact 
regions of pathology, thus providing medical profession-
als with a more granular understanding of fracture char-
acteristics. Overall, our proposed system offers a cohesive 
and academically rigorous approach to improve ankle 
fracture diagnosis through advanced machine learning 
models and diagnostic visualizations.

Pre-processing
To optimize the efficiency of labeling and segmenta-
tion, images had to be preprocessed to meet the input 
size specification of CNNs with fully connected layers. 
Thus, the images were resized to a uniform size to ensure 
consistency in dimensions across the dataset. Utilizing 
Pydicom, each CT image was resized to a 224 × 224 pixel 
image and then converted to a vector matrix. Addition-
ally, grayscale masks were added to the images to high-
light the region of interest (ROI). This technique removed 
any irrelevant background information and focused the 
model’s attention solely on the bone. To simulate noisy 
and low-quality images that may be encountered in a 
clinical setting, Gaussian noise was added to the images. 
Data enhancement techniques such as data augmentation 
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were also used to increase the size of the dataset and to 
reduce overfitting. Normalization was also applied to the 
images, which involved scaling the pixel values to a range 
of 0 to 1. This enabled the model to learn more efficiently 
by reducing the effect of varying intensity levels in the 
images. Finally, data augmentation involved generating 
new images from the existing ones by applying random 
transformations such as random contrast, random scal-
ing, random rotation. After data augmentation, our data-
set expanded to include 2,364 images for the training set, 

792 images for the test set, and 792 images for the valida-
tion set. Figure 2 presents the original image and the pre-
processed image of a positive fractures case, and the data 
augmentation action in this study.

The integration of Squeeze-and-Excitation Networks with 
ResNet50
Squeeze-and-Excitation Networks (SENet) emerged 
as a pivotal advancement in the realm of deep learn-
ing, presenting a novel approach to model recalibration 

Fig. 1  Flowchart of the machine learning-based diagnostic system for ankle fractures
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techniques [23]. Designed to adaptively recalibrate chan-
nel-wise feature responses, SENet aimed to enhance the 
representational power of a network without adding 
significant computational burden [24]. This approach’s 
fundamental premise was to focus on channel interde-
pendencies to capture richer contextual information in 
image processing tasks, something classical CNN archi-
tectures often overlooked.

ResNet50, on the other hand, was part of the ResNet 
family - a series of deep residual networks recognized for 
their profound depth, which sometimes surpassed hun-
dreds of layers [25]. This depth, while instrumental in 
capturing intricate patterns in images, was plagued by 
the vanishing gradient problem. However, the introduc-
tion of skip or shortcut connections in ResNet provided 
an avenue for the direct transmission of the gradient, 
alleviating the aforementioned issues.

Recognizing the distinct advantages of both SENet and 
ResNet50, our endeavor centered on the amalgamation 
of these two state-of-the-art technologies. During the 
establishment of the combined SENet + ResNet50 model, 
the primary challenge was integrating the recalibration 
mechanism of SENet into the deep residual framework 
of ResNet50. Figure  3 shows the integration approach 
of our model. The foundational ResNet module, shown 
on the left side of Fig.  3, uses an input “X” that under-
goes transformation within a residual block. The benefit 
of ResNet lies in its skip connections: the input feature 
map can bypass certain layers, only to be re-added to the 
output, resulting in “X ̂.” Conversely, the enhanced SE-
ResNet module, depicted on the right, starts with the 
same residual transformation. Following this, the feature 
map, represented as W x H x C (width, height, and chan-
nel dimension), is subject to the SENet’s “Global pooling,” 
condensing its spatial dimensions. In the architecture of 
our SENet-enhanced ResNet50 model, particular empha-
sis is placed on the channel dimension (“C”) in the con-
text of CT images, typically represented in grayscale. 
This focus on the channel dimension is pivotal, as the 
SENet mechanism aims to adaptively recalibrate chan-
nel-wise feature responses, enhancing the model’s abil-
ity to discern subtle variations in grayscale indicative of 
fractures. Unlike conventional RGB images, where three 
channels (C = 3) represent color information, CT images 
usually comprise a single channel (C = 1), underscoring 
the importance of channel-wise attention in amplifying 
relevant features for fracture detection. It is imperative 
to clarify that the SENet’s design inherently targets the 
channel dimension without altering the spatial dimen-
sions (width “W” and height “H”) of the feature maps. 

Fig. 3  Architectural comparison of neural modules —(3a) traditional ResNet module and (3b) adapted ResNet module

 

Fig. 2  Data pre-processing: (2a) original vs. preprocessed CT image of 
a positive fracture case; (2b) example of data augmentation techniques 
applied
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This specificity ensures that the recalibration process 
enriches the depth of information captured within the 
channels, fostering a model that is finely attuned to the 
discriminative features essential for identifying ankle 
fractures in CT scans. Two subsequent Fully Connected 
(FC) layers then orchestrate the ‘squeeze’ and ‘excite’ 
functionalities intrinsic to SENet, refining the model’s 
focus on specific channels. The culmination is the “Scale” 
operation, recalibrating the post-residual feature map. 
By strategically embedding these SE modules within the 
ResNet50 architecture, our hybrid model aimed to har-
ness the best of both worlds: the depth and gradient 
benefits of ResNet and the channel-wise recalibration 
prowess of SENet. This fusion was designed to address 
the unique challenges of our study more proficiently.

Comparative analysis of adapted ResNet50, ResNet50, and 
EfficientNetB5
While the incorporation of the Squeeze-and-Excitation 
Network (SENet) with ResNet50 was the centerpiece of 
this study, it was essential to benchmark the performance 
of this enriched model against other well-established 
architectures. Consequently, two other models were 
chosen for comparison: the original ResNet50 and the 
EfficientNetB5.

The EfficientNetB5 model, a member of the Efficient-
Net family, is noted for its compound scaling method 
which uniformly scales all dimensions of depth, width, 
and resolution using a fixed set of scaling coefficients. 
This approach was inspired by the observation that the 
relationship between different dimensions in neural net-
works is not arbitrary. Rather, it requires a carefully bal-
anced trade-off. Boasting a higher number of layers and 
parameters compared to its predecessors in the Efficient-
Net series, EfficientNetB5 provides an impressive balance 
between computational efficiency and model perfor-
mance [26].

For the purposes of this study, the same dataset 
was employed to train all three models: the adapted 
ResNet50, the original ResNet50 and the EfficientNetB5. 
The training regimen was held consistent across all mod-
els. An initial learning rate of 0.001 was employed, which 
was reduced by a factor of 10 whenever the validation 
loss plateaued for more than five epochs. This strategy 
ensured that each model could hone in on the optimal 
weights as training progressed. All models were trained 
for a total of 20 epochs, utilizing the Adam optimizer 
[27]. The chosen batch size was 32, and the models were 
trained using a categorical cross-entropy loss function, 
given the classification nature of the task. Following the 
training phase, the performance metrics of accuracy, 
precision, recall, and F1-score were calculated for each 
model on a separate test dataset.

Integration and implementation of Grad-CAM technology
Grad-CAM, which stands for Gradient-weighted Class 
Activation Mapping, has garnered significant attention 
in recent years as an interpretability tool for convolu-
tional neural networks (CNNs). At its core, Grad-CAM 
provides visual explanations of the areas within an input 
image that are vital for predictions made by CNN mod-
els [28]. This technique operates by leveraging the gradi-
ents of any target concept flowing into the model’s final 
convolutional layer to produce a coarse localization map, 
which highlights the important regions in the image for 
predicting the concept. In this research, the integra-
tion of Grad-CAM with our adapted ResNet50 model 
was executed to enhance the diagnostic capabilities of 
the model. This decision was underpinned by the belief 
that while a high classification accuracy is indispensable, 
understanding why and how a model makes its decisions 
can significantly augment its value, especially in the field 
of medical imaging where such insights can aid clinical 
professionals in corroborating their findings.

The implementation process began by identifying the 
final convolutional layer in our adapted ResNet50 model. 
This layer was chosen because it contains high-level fea-
ture maps that capture the most discriminative features 
of the input images. Once identified, the gradients of the 
predicted class with respect to the feature maps of this 
convolutional layer were computed. These gradients were 
then globally average-pooled to obtain the neuron impor-
tance weights. By applying a weighted combination of 
these neuron importance weights with the feature maps 
and subsequently passing this through a ReLU activa-
tion function, the Grad-CAM heatmaps were produced 
[29]. These heatmaps were then overlaid on the original 
input images to visually highlight the regions that con-
tributed most significantly to the model’s decision. The 
coarse Grad-CAM maps were upscaled using bilinear 
interpolation to match the resolution of the input images. 
This ensured that the highlighted regions were precisely 
aligned with the relevant structures in the ankle.

Results
The systematic evaluation of the performance of differ-
ent deep learning models in the context of ankle fracture 
identification offered enlightening insights. The graphical 
representations in the provided figures provide a compre-
hensive understanding of the comparative performance 
of the three models: ResNet50, EfficientNetB5, and the 
Adapted ResNet50 with SENet capabilities.

Training convergence and model accuracy over epochs
The training accuracy over the epoch progression for 
each of the models was elucidated in Fig. 4a. Initially, all 
three models exhibited an evident increase in their train-
ing accuracy during the first few epochs. This early surge 



Page 7 of 11Wang et al. BMC Musculoskeletal Disorders          (2024) 25:250 

underscores the rapid learning capabilities of these deep 
architectures, especially when presented with a well-
curated dataset.

The Adapted ResNet50 model (represented by red cir-
cles) reached an accuracy just above 0.7 within the first 
epoch. Its performance continued to rise steeply until 
around the fifth epoch, post which its progress began to 
decelerate. By the 20th epoch, its accuracy stabilize by 
0.93, indicating its robustness and adaptability in frac-
ture identification. The EfficientNetB5 model’s perfor-
mance (depicted by green diamonds) evolved similarly, 
albeit starting from a lower initial accuracy, slightly above 
0.6. This model’s accuracy growth rate slowed around 
the tenth epoch and stabilize at 0.9 by the 20th epoch. 
ResNet50’s trajectory (illustrated by blue triangles) com-
menced just below 0.7. Interestingly, its accuracy trajec-
tory mirrored that of the Adapted ResNet50 closely, but 
it always lagged marginally. This trend persisted, with 
ResNet50 achieving a stabilization at 0.89, but lower than 
its adapted counterpart.

Comparative performance metrics
Figure  4b presented a detailed comparison of the per-
formance metrics for each model. When assessing accu-
racy, the Adapted ResNet50 model led the cohort with 
a score of 0.93, substantiating its enhanced capabilities. 
The EfficientNetB5 followed closely with 0.90, while 
the original ResNet50 model recorded an accuracy of 
0.89. The Area Under the Curve (AUC) metric, often 
indicative of a model’s capability to distinguish between 
classes, was also analyzed. The Adapted ResNet50 once 
again emerged at the forefront with an AUC of 0.95. Effi-
cientNetB5 and ResNet50 closely trailed with scores of 
0.92 and 0.91, respectively. Recall, which evaluates the 
true positive rate of the models, offered an interesting 
perspective. The Adapted ResNet50 achieved the high-
est recall of 0.92, while EfficientNetB5 scored 0.88 and 
ResNet50 scored 0.87. Lastly, the F1 score, a harmonic 
mean of precision and recall, was assessed. The Adapted 

ResNet50 secured the top position with a score of 0.93, 
underscoring its balanced performance. The Efficient-
NetB5 recorded an F1 score of 0.89, and the ResNet50 
rounded off the evaluation with an F1 score of 0.88.

The results unequivocally emphasized the superior per-
formance of the Adapted ResNet50 model across all the 
evaluated metrics. Its integration with SENet capabili-
ties appeared to have endowed it with enhanced discern-
ment, particularly evident in its training convergence rate 
and final accuracy.

Grad-CAM visualization analysis of the adapted ResNet50 
model on ankle fracture CT images
The integration of the Grad-CAM visualization tech-
nique provided a comprehensive understanding of the 
areas where the adapted ResNet50 model was particu-
larly attentive when discerning ankle fractures in CT 
images. This visualization not only aided in offering 
clarity on the model’s decision-making process but also 
served as a platform to contrast its performance against 
the expertise of orthopedic specialists.

In the experiment, a representative CT image show-
casing an ankle fracture was chosen for analysis. Three 
orthopedic experts with significant experience in the field 
were then solicited to demarcate the regions they believed 
to be indicative of fractures. Their collective annotations 
provided a benchmark against which the predictions of 
the adapted ResNet50 model could be weighed. As can 
be observed in the presented Fig. 5, two principal areas 
were marked by the orthopedic experts, labeled as area 1 
and area 2. Area 1, positioned towards the upper segment 
of the image, showcased a pronounced overlap between 
the fracture features recognized by the experts and the 
regions illuminated on the Grad-CAM heatmap. This 
congruence underscores the model’s competence in iden-
tifying and aligning with the insights of the specialists, 
suggesting a robust performance in this region. How-
ever, a divergent pattern was noted in area 2, located on 
the lower right quadrant of the image. Here, the experts 

Fig. 4  Comparative performance analysis of deep l Models for ankle fracture identification; 4a) Training accuracy evolution over epochs; 4b) Comparative 
evaluation of model metrics: accuracy, AUC, Recall, and F1 score
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had identified certain fracture characteristics which the 
Grad-CAM heatmap failed to highlight. This discrepancy 
implies that the adapted ResNet50 model might not be 
capturing all the nuanced features of the fracture in this 
specific region. This observation suggests an underfitting 
tendency of the model in certain scenarios, indicating the 
necessity for further optimization or training to better 
capture the intricacies of ankle fractures.

Discussion
The systematic evaluation and comparison of deep learn-
ing models in the arena of medical imaging, specifically 
for the identification of ankle fractures using CT images, 
yielded notable insights. The core innovation of this 
research was the development and integration of the 
Adapted ResNet50 model with SENet capabilities. In the 
burgeoning field of deep learning, ResNet architectures 
have consistently been acknowledged for their prow-
ess in mitigating vanishing gradient issues and enabling 
the training of deeper networks [25]. However, it was 
discerned that while traditional ResNet architectures 
brought commendable capabilities to the table, there 
remained scope for enhancement.

This realization steered our efforts toward adapting the 
standard ResNet50 model by incorporating SENet capa-
bilities. The rationale behind this integration was rooted 
in the SENet’s distinctive ability to refine channel-wise 
feature responses adaptively [23]. By doing so, it could 
recalibrate the features more effectively, which was sur-
mised to amplify the discriminatory capabilities of the 
model, especially in tasks as nuanced as ankle fracture 
identification.

In the presented results, the benefits of SENet integra-
tion into the ResNet50 architecture were clearly dem-
onstrated, with the Adapted ResNet50 model showing 
significant improvements over its peers in our study, 

notably the original ResNet50 and EfficientNet models, 
across multiple metrics. While these findings highlight 
the potential of SENet capabilities in enhancing model 
performance, we acknowledge that our comparison was 
focused on a limited set of architectures. The observed 
enhancements, while substantial within this context, 
invite further exploration against a broader spectrum of 
models to fully validate the generalizability of our results.

It’s noteworthy that other architectures, specifically 
EfficientNetB5, were also under scrutiny. EfficientNets 
have been revered for their compound scaling method, 
balancing depth, width, and resolution [26]. However, 
even with its inherent sophistication, it was observed 
that the model was marginally eclipsed by our Adapted 
ResNet50, especially in terms of convergence rate and 
final accuracy.

In comparison with previous literature on the use of 
deep learning for ankle fracture detection, such as the 
study in 2021 [30] that achieved high sensitivity and 
specificity using radiographs, our research contributes 
to the expanding body of knowledge by exploring the use 
of CT images and SENet-enhanced ResNet50. The refer-
enced study demonstrated the effectiveness of employing 
Inception V3 and ResNet50 with radiographs, highlight-
ing the potential of deep learning methods in accurately 
assessing fractures with high precision. Notably, their 
use of the Danis-Weber classification method and the 
comparison of single-view versus three-view radio-
graphs for training DCNNs provided valuable insights 
into optimizing image selection for deep learning algo-
rithms. Our study’s focus on CT images, known for their 
detailed visualization of bone structures, alongside the 
novel integration of SENet, aims to further enhance the 
diagnostic accuracy and interpretability of deep learning 
models. This approach underscores the diversity of meth-
odologies and imaging modalities that can be leveraged 

Fig. 5  Comparison of orthopedic experts’ annotations and Grad-CAM heatmap on a CT image of an ankle fracture
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to improve fracture detection. The high performance of 
DCNNs in the previous study, with sensitivity and speci-
ficity reaching up to 98.7% and 98.6% respectively using 
Inception V3, sets a benchmark for our work and others 
in the field [30]. Our findings contribute to this ongoing 
dialogue by suggesting that enhancements such as SENet 
can provide significant improvements, particularly in 
the context of CT-based fracture detection, which pres-
ents different challenges and opportunities compared to 
radiograph-based assessments. Future research could 
explore the comparative effectiveness of different deep 
learning architectures across various imaging modali-
ties, potentially incorporating multimodal approaches to 
achieve the highest diagnostic accuracy.

Incorporating the Grad-CAM visualization technique 
was another pivotal aspect of this study. This technique 
illuminated the regions of focus for our adapted model, 
providing a visual corroboration of its decisions. While 
this in itself is not novel, using it to juxtapose the model’s 
inferences with expert annotations was an enlightening 
endeavor. This comparative analysis not only strength-
ened the credibility of the model’s predictions but also 
highlighted areas where human expertise and machine 
predictions diverged. In addressing the inherent limita-
tions of Grad-CAM for practical applications in medical 
imaging, particularly its occasional misalignment with 
clinically relevant areas, we emphasize the importance of 
a multi-faceted approach. This includes rigorous model 
training and expert validation of visualization outputs. 
These strategies collectively enhance the practical utility 
of Grad-CAM in our study, ensuring that the visualiza-
tions it provides are both accurate and clinically mean-
ingful. Our commitment to these practices reflects our 
goal to bridge the gap between deep learning technology 
and its application in enhancing diagnostic accuracy and 
efficiency in orthopedics.

The implications of our findings are manifold. For 
healthcare professionals, especially orthopedic special-
ists, tools such as the Adapted ResNet50 model can be 
invaluable adjuncts. They can bolster diagnostic accu-
racy, expedite the decision-making process, and poten-
tially enhance patient outcomes. From the perspective 
of AI research, this study exemplifies how even estab-
lished architectures like ResNet can be reimagined and 
enhanced, pushing the boundaries of what’s achievable.

In the realm of the identification of ankle fractures, the 
incorporation of the Squeeze-and-Excitation Network 
(SENet) mechanism represents a significant architec-
tural advancement. The SENet mechanism, known for its 
channel-wise attention functionality, allows for the adap-
tive recalibration of channel-wise feature responses. This 
recalibration enables the model to prioritize more rele-
vant features over less informative ones, thereby improv-
ing the accuracy and reliability of fracture detection.

To elucidate the impact of the SENet mechanism on 
the learned features of our enhanced ResNet50 model, 
we embarked on a comprehensive interpretation strat-
egy. Initially, through feature visualization, we observed 
how the inclusion of SENet blocks altered the network’s 
focus. Activation maps generated before and after apply-
ing SENet blocks unveiled a discernible shift in attention 
towards regions critical for accurate fracture identifica-
tion. This shift not only underscores the SENet’s capa-
bility to refine the model’s interpretability but also 
highlights its utility in emphasizing salient features for 
the task at hand.

Further quantitative analysis was conducted via abla-
tion studies, where the performance metrics of mod-
els with and without the SENet blocks were compared. 
These studies revealed that the incorporation of SENet 
significantly enhances the model’s discriminative power, 
as evidenced by improvements in accuracy, precision, 
and recall metrics. Such findings quantitatively substan-
tiate the SENet mechanism’s vital role in bolstering the 
model’s performance.

Through these interpretative efforts, it became evi-
dent that the SENet mechanism significantly refines the 
model’s focus, leading to more accurate and depend-
able fracture identification. This adaptive recalibration 
of channel-wise feature responses not only enhances the 
model’s accuracy but also its interpretability, offering a 
profound understanding of the complex patterns charac-
teristic of ankle fractures.

Despite the comprehensive nature of the study and 
the promising results observed, several limitations war-
rant acknowledgment. Firstly, the dataset predominantly 
relied upon a single source, potentially introducing biases 
and limiting the generalizability of findings to broader 
contexts. Additionally, the exclusive focus on CT images, 
without integrating complementary modalities like 
X-rays or MRIs, might also restrict the holistic under-
standing of ankle fractures. Foremore, in this study, 
our focus was on the detection of ankle fractures using 
SENet-enhanced ResNet50, without classifying them 
according to the Danis-Weber or other orthopedic sys-
tems. The Danis-Weber classification is crucial for clini-
cal decision-making but was not part of our initial model 
training criteria. Our aim was to first establish a reliable 
method for fracture detection. Future work will explore 
extending our model to classify fractures based on estab-
lished systems like Danis-Weber, enhancing both diag-
nostic accuracy and clinical utility.

Conclusion
The study provides a meticulous analysis of the capabili-
ties of various deep learning models, specifically focusing 
on their performance in the detection of ankle fractures. 
Among the evaluated models, the Adapted ResNet50 
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with SENet capabilities unequivocally emerged as the top 
performer across multiple metrics, including accuracy, 
AUC, recall, and the F1 score. Its rapid training conver-
gence and a final accuracy of 0.93 underscore the poten-
tial advantages of integrating SENet capabilities into the 
ResNet50 architecture. The Grad-CAM visualization 
technique employed with the Adapted ResNet50 model 
further illuminated the areas of focus when discerning 
fractures in CT images. A comparison with expert anno-
tations showcased the model’s competence in identify-
ing fractures, with pronounced overlap in certain areas. 
In light of these findings, the Adapted ResNet50 model 
represents a promising tool in the realm of orthopedic 
diagnostics.
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