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Abstract

Background: This study systematically summarizes quantitative imaging biomarker research in non-traumatic neck
and shoulder musculoskeletal disorders (MSDs). There were two research questions: 1) Are there quantitative imaging
biomarkers associated with the presence of neck and shoulder MSDs?, 2) Are there quantitative imaging biomarkers
associated with the severity of neck and shoulder MSDs?

Methods: PubMed and SCOPUS were used for the literature search. One hundred and twenty-five studies met primary
inclusion criteria. Data were extracted from 49 sufficient quality studies.

Results: Most of the 125 studies were cross-sectional and utilized convenience samples of patients as both cases and
controls. Only half controlled for potential confounders via exclusion or in the analysis. Approximately one-third reported
response rates. In sufficient quality articles, 82% demonstrated at least one statistically significant association between
the MSD(s) and biomarker(s) studied. The literature synthesis suggested that neck muscle size may be decreased in neck
pain, and trapezius myalgia and neck/shoulder pain may be associated with reduced vascularity in the trapezius
and reduced trapezius oxygen saturation at rest and in response to upper extremity tasks. Reduced vascularity in
the supraspinatus tendon may also be a feature in rotator cuff tears. Five of eight studies showed an association
between a quantitative imaging marker and MSD severity.

Conclusions: Although research on quantitative imaging biomarkers is still in a nascent stage, some MSD biomarkers
were identified. There are limitations in the articles examined, including possible selection bias and inattention to
potentially confounding factors. Recommendations for future studies are provided.
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Background
Soft tissue neck and shoulder musculoskeletal disorders
(MSDs), namely, disorders of the muscles, tendons, liga-
ments, nerves, or blood vessels, are prevalent worldwide
[1–4], are a common cause of work absence and disabi-
lity [5], and impose a sizeable societal economic burden
[1, 3, 4, 6–11].
Most options for screening, surveillance and diagnosis

of proximal upper extremity MSDs depend on symptoms.

Improved diagnostic and screening methods, especially
objective techniques, are needed [12, 13]. A biomarker has
been defined as “a characteristic that is objectively mea-
sured and evaluated as an indicator of normal biologic
processes, pathogenic processes, or pharmacologic re-
sponses to a therapeutic intervention”[14]. Quantitative
medical imaging techniques are increasingly used in clin-
ical practice and MSD research, and enable detection of
potential MSD biomarkers, including functional and mor-
phological changes. The Quantitative Imaging Biomarkers
Alliance and the Terminology Working Group define a
quantitative imaging biomarker as “an objective characte-
ristic derived from an in vivo image measured on a ratio
or interval scale as an indicator of normal biological
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processes, pathogenic processes or a response to a thera-
peutic intervention” [15]. Valid and reliable biomarkers
could improve diagnosis and screening methods [16] and
provide objective means to evaluate medical treatments
and workplace interventions. Use of such biomarkers may
also elucidate MSD pathomechanisms.
Three biomarkers classes are conventionally described:

exposure, effect (disease), and susceptibility [17]. Herein,
we have reviewed biomarkers of effect, defined as “any
change that is qualitatively or quantitatively predictive of
health impairment or potential impairment…” [17].
Through measurement of biomarkers of effect, patho-
physiological processes may be illuminated and used to
stage MSD severity, such as early biomarkers that pre-
cede disease diagnosis versus late biomarkers in already
diagnosed subjects.

Previous biomarker reviews
Prior reviews on this topic include a pioneering paper
highlighting the potential for MSD biomarkers to detect
subclinical disease and monitor MSD severity [18], and a
later MSD review article [19] focused on biochemical
markers. Neither paper mentioned medical imaging. Our
recent systematic review also focused on biochemical
biomarkers in MSDs [20]. To our knowledge, there have
been no published reviews of quantitative imaging bio-
markers in neck and shoulder MSDs.
The purpose of this systematic review was to conduct

a comprehensive assessment of quantitative imaging bio-
markers in neck and shoulder MSDs. We aimed to an-
swer the following two research questions:

1. Are there quantitative imaging biomarkers associated
with the presence of neck and shoulder MSDs?

2. Are there quantitative imaging biomarkers associated
with the severity of neck and shoulder MSDs?

Methods
Review team and process overview. Our review team
consisted of eight researchers with expertise in musculo-
skeletal radiology and in epidemiologic, intervention and
experimental studies, including studies on pathome-
chanisms within the field of work-related MSD research.
The review process was as follows: 1) research questions
were formulated; 2) principal concepts of the review
were defined; 3) a search strategy and terms were devel-
oped (Additional file 1); 4) PubMed and Scopus data-
bases were searched, with results pooled with articles
identified from the authors’ files; 5) identified papers
were screened based on pre-defined criteria (Additional
files 1, 2 and 3) using a two-step procedure of primary
(title and abstract) and secondary (quality) screens; 6)
summary tables were created from sufficient quality pa-
pers; and 7) evidence was synthesized with respect to

the two research questions. A consensus process was
used throughout the review process. See Gold et al. for
further details [20].
Neck and shoulder MSDs were defined as clinical

diagnoses or musculoskeletal symptoms in the neck
and shoulder region. These included both specific and
non-specific conditions related to muscles, tendons,
nerves, blood vessels or ligaments [21]. The scope of
this review encompassed MSDs that occur in a work-
related context [22].
Quantitative imaging biomarker was defined as an ob-

jective characteristic derived from an in vivo image or
from an in vivo signal captured in response to electro-
magnetic radiation to detect morphology or function,
measured on a ratio or interval scale as an indicator of
normal biological or pathogenic processes [15]. We have
focused on minimally invasive/non-invasive methods.
Potential quantitative imaging biomarkers could be de-
rived through MRI, ultrasound, far infrared thermog-
raphy, near infrared spectroscopy (NIRS), laser Doppler
flowmetry, and other modalities. Thus, for example,
muscle oxygenation as measured through NIRS was in-
cluded in this review. Because plain radiographs (x-rays)
are best utilized in evaluating bone abnormalities and
have poor contrast resolution, this imaging modality is
not routinely indicated in soft tissue evaluation [23–26].
Thus, studies using only plain radiography were ex-
cluded from this review.
Severity was operationalized as encompassing longitu-

dinal and cross-sectional differences in symptoms.
Inclusion criteria. The current review was limited to

studies on adults (age > 18 years) with non-traumatic
neck and shoulder MSDs, published between June 4,
1988 and October 14, 2016 and written in English lan-
guage. Potential biomarkers were examined for the fol-
lowing specific MSDs, as categorized by Boocock, et al.
[21]: rotator cuff syndrome/shoulder tendonitis, shoul-
der capsulitis and thoracic outlet syndrome. Other spe-
cific MSDs included are listed in Boocock, et al. [21]
Table 2, although status post-whiplash, cervico-brachial
fibromyalgia, and joint-related conditions were excluded.
Upper extremity non-specific regional pain, namely,
“neck pain”, “shoulder pain”, and “neck/shoulder pain”,
was also included. We included articles that met our in-
clusion criteria, even if some parts of the study were
consistent with the exclusion criteria; however, only re-
sults in compliance with our criteria were included.
Exclusion criteria are summarized in Additional file 2.

Literature search
The search was first conducted in PubMed and com-
bined with articles identified from the authors’ files. Ar-
ticles were screened for quality. If met, a second search
for papers that cited the sufficient quality articles was
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conducted using Scopus. Additional file 1 provides an
overview of the search strategy, while Fig. 1 illustrates
the overall search strategy and selection procedure.
PubMed search terms included both MESH terms and
key words selected for two categories: neck and shoulder
MSDs, and biomarkers. Search terms within each cat-
egory were combined using the “OR” operator, while
search terms between categories were combined using
“AND”. A systematic procedure was carried out for se-
lection of appropriate MESH terms and key words,
where each search term was entered by a step-wise pro-
cedure. Fifteen articles were identified by the review
team and used for refining the search and testing its sen-
sitivity. See Additional file 4 for the search string.
A total of 4002 articles were examined by members of

the review team. The final PubMed search resulted in
3999 articles; three additional papers were added from
the team members’ personal files. Primary and secondary
screens were implemented (see below and Additional
files 1, 2 and 3). The Scopus search identified recently
published articles in PubMed that still lacked assigned
MESH terms. Since a PubMed search may miss relevant
studies in other databases, the Scopus search reduced
this potential search strategy bias. To assure clarity and
limit reviewer bias, pilot testing of evaluation criteria
was conducted at each stage of the review process.

Primary screen-selection of articles
The primary screen was conducted by two independent
reviewers assessing each title and abstract for eligibility
based on inclusion and exclusion criteria (Additional
file 2), after importing all records from PubMed into
systematic review software (EPPI-reviewer4 v4.3.4,
EPPI-Centre, Social Science Research Unit, Institute of
Education, University of London, UK). The full text was
read if necessary. A “yes” answer on any question in

Additional file 2 resulted in article exclusion. Results
were compared between reviewers, and consensus
agreement was reached in all cases (with input from a
third person in case of disagreement between re-
viewers). The same procedure was repeated for articles
from personal files and articles found in Scopus.

Secondary screen-quality assessment and data extraction
All articles passing the primary screen were scored for
quality by five review team members. The articles were
randomly allocated to five different clusters; each
reviewer was assigned randomly to two of these clusters.
In the quality screen, each article was assessed by two
independent reviewers, scores were compared, and a
consensus agreement was reached after discussing
disagreements (using a third reviewer as needed).
Additional file 3 lists questions used for the quality as-
sessment. These questions were derived from reporting
guidelines and checklists for quality assessment in
health-related research studies [27–31]. Seventeen items
were included in the scoring system, with each item
scored as either “yes” (1 point), “unknown or not appli-
cable” (0) or “no” (0). Scores were summed for each
paper (range: 0–17). Articles scoring at or above 70% of
the maximum (12/17) were labeled as “sufficient quality”
and were included for data extraction. Articles scoring
“no” on question 15 were excluded from data extraction.
These included papers with less than appropriate statis-
tical analysis methods, such as multiple comparisons
without adjustment, and modeling without accounting
for repeated measures. Data extraction items are listed
in Additional file 5.

Research synthesis
Ulitizing a best evidence synthesis approach, we evalu-
ated the number of sufficient quality articles in order to

Fig. 1 Flowchart of literature search
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identify a particular biomarker or class of biomarkers in
their potential association with MSD(s) [32]. Consider-
ing the biomarker heterogeneity, it was not possible to
conduct a meta-analysis. However, it was possible to
group results according to the MSD, and then by physio-
logical process or morphology, e.g., hemodynamic and/
or oxygenation indicators or muscle dimensions, within
diagnoses or symptom designations. An association be-
tween a biomarker and an MSD in three or more suffi-
cient quality studies (and at most one sufficient quality
study with a null finding) was regarded as evidence that
an indicator could serve as a MSD quantitative imaging
biomarker. We did not design our review to present dif-
ferent levels of evidence.

Results
Of the 3999 articles identified through the PubMed (pri-
mary) search (Fig. 1), and the three papers added from
authors’ files, 99 met secondary screening criteria. Ten
papers were excluded after reading the entire article, and
three eliminated due to inadequate statistical methods,
leaving 86 articles to be scored in the secondary (quality)
screen. Forty-four of these met the sufficient quality cri-
teria score. The Scopus database search of these 44 suffi-
cient quality papers yielded 394 citations of which 26
were determined to be non-duplicates and relevant
through title and abstract review. Seventeen were elimi-
nated at the secondary screening stage after reading the
entire article. Nine articles were scored during the sec-
ondary screen, although one was eliminated from data
extraction for less than appropriate statistical methods.
Of the remaining Scopus identified articles, five scored
at ≥12. These five were added to the 44 PubMed identi-
fied and similarly scored articles. Thus, 49 studies were
regarded to be of sufficient quality for data extraction.

Secondary screen-quality assessment overview
Additional file 6 shows quality scores of all papers that
had undergone secondary screening (n = 96; 86 from
PubMed and 9 from Scopus). The majority had clearly
defined aims, biomarkers, MSDs, and results. All but
two unique studies (one longitudinal cohort represented
by [33–35] and the other by [36]) had a cross-sectional
design, and most utilized convenience samplings of pa-
tients, for both cases and referents. Just over half of the
studies controlled for confounding factors through ex-
clusion to a particular age or gender, or through a statis-
tical adjustment in the analysis. Thirty-four studies
(37%) explicitly stated that those analyzing biomarkers
were blinded to case status.

Data extraction from sufficient quality studies
Additional file 7 gives a descriptive overview of the in-
cluded studies. The bulk of sufficient quality studies

examined neck pain, rotator cuff tears, and trapezius
myalgia and other neck/shoulder pain conditions. No
sufficient quality studies examined thoracic outlet syn-
drome. Approximately three-quarters (19/25) of the
shoulder disorder studies were conducted in populations
with at least one analysis group having an average age of
≥50 years. In contrast, the mean age by analysis groups
in the neck pain studies ranged from 22 to 34 years,
while the mean age in neck/shoulder studies ranged
from 23 to 48 years.

Are there quantitative imaging biomarkers associated
with the presence of neck and shoulder MSDs?
The majority of studies demonstrated an association be-
tween at least one biomarker and the MSD(s) examined
(Table 1). Only 9/49 (18%) studies reported insignificant
findings throughout [37–45].

Neck pain (10 studies)
Ten studies examined neck pain [37, 38, 46–53]. De-
creased muscle dimensions were observed in cases in
the cervical multifidus during rest [47]. In Rahnama et
al. [52], no difference in multifidus muscle thickness was
observed during baseline, but there was a smaller in-
crease in cases than in controls in muscle thickness from
baseline values during isometric maximum voluntary
contraction (MVC). An increased muscle shape ratio
(ratio between lateral and anterior-posterior dimensions)
was seen in the multifidus of cases [47]. Reduced muscle
dimensions were also observed in the longus colli
[48, 49], and in the semispinalis capitis on cases’ painful
side [50]. Dorsal neck muscle thickness change from rest
to MVC was different in neck pain cases than in con-
trols, with a tendency toward increased semispinalis
capitis thickness in controls, and increased semispinalis
cervicis thickness in cases [53]. There was no difference
in subcutaneous tissue thickness above the sternocleido-
mastoid or anterior scalene muscles [38].
Greater serratus anterior muscle activity, measured

using fMRI, was observed at thoracic vertebral level 6 in
cases [51]. However, less longus colli recruitment, mea-
sured by muscle thickness, was found at the greatest
flexion angle during incremental nodding [49]. Elliott et
al. [46] detected less fat infiltration in neck extensors in
neck pain vs. whiplash patients. No difference in trapez-
ius skin temperature, or temperature asymmetry be-
tween the left and right trapezii was observed in neck
pain vs. controls [37].

Rotator cuff tear (11 studies)
Eleven studies investigated rotator cuff tears [33–36, 39, 54–59].
Decreased supraspinatus vascularity or blood flow was
observed in two studies [55, 58], and reduced supras-
pinatus functional capillary density in another [54]. In
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Table 1 Are there quantitative imaging biomarkers associated with the presence of neck and shoulder MSDs?

MSD Classification and diagnosis Author(s) Major results (case-control comparison) Conclusion

Neck disorders and symptoms

Neck pain Dibai Filho
(2012) [37]

Skin temperature
Skin temperature (L & R trapezius), difference
btwn sides (thermal asymmetry), NS.

No

Neck pain Elliott (2008)
[46]

Fat index indicating fatty infiltration (relative fat)
Fat index: cases < controls, p < 0.001 in all
muscles.

Yes
↓ fat index in cases in all neck extensor
muscles (see Additional file 7).

Neck pain Falla (2004)
[38]

Subcutaneous tissue thickness over SCM, AS
SCM subcutaneous tissue thickness (L & R):
NS cases vs. controls
AS subcutaneous tissue thickness (L & R):
NS cases vs. controls

No

Neck pain Fernández-de-las-
Peñas (2008) [47]

Multifidus CSA, muscle shape ratio
CSA: ANOVA, group (p < 0.001) & cervical level
(p < 0.001) effects. No interactions. Cases
< controls at C3, C4, C5 (p < 0.001) & at C6
(p < 0.01). Muscle shape ratio: ANOVA, group
(p < 0.001) & cervical level (p < 0.001) effects.
Significant interactions btwn group & level
(p = 0.01). Cases > controls at C3 (p < 0.001)
& C6 (p < 0.01).

Yes
↓ multifidus CSA in cases at C3, C4, C5,
C6
↑ muscle shape ratio in cases at C3, C6

Neck pain Javanshir
(2011) [48]

Lco CSA, anterior-posterior dimension (APD),
lateral dimension (LD), and shape ratio (LD/APD)
Lco CSA: cases < controls, p < 0.001.
Lco APD: cases < controls, p < 0.01.
Lco LD, shape ratio, NS cases vs. controls.

Yes
↓ Lco CSA in cases
↓ Lco APD in cases

Neck pain Karimi (2016)
[53]

Dorsal neck muscle thickness change w. 50%
& 100% shoulder MVC in 6 directions
Dorsal neck muscle thickness: During MVC:
significant interaction of group x muscle,
p = 0.008. NS, cases vs. controls group x
direction; group x force.

Yes
Dorsal neck muscle thickness group x
muscle effect

Neck pain Jesus-Moraleida
(2011) [49]

Lco thickness, SCM thickness, change of
thickness during test/thickness during rest =
proportion of muscle recruitment
Lco thickness increase throughout all CCFT
phases: cases < controls (p < 0.001). SCM
thickness increase throughout all CCFT phases:
NS, cases vs. controls. Lco recruitment: cases
< controls, phase 4 (p = 0.02), phase 5
(p = 0.004), NS other phases. SCM recruitment:
NS, cases vs. controls.

Yes
↓ Lco thickness increase throughout all
CCFT phases in cases
↓ Lco recruitment, phases 4 & 5

Neck pain Park (2013) [50] Mean difference in the bilateral semispinalis
capitis muscle thickness
Mean difference in the bilateral semispinalis
capitis thickness: cases > controls, p < 0.05.
Within cases mean difference in the bilateral
semispinalis capitis thickness: painful side <
asymptomatic side, p < 0.05.

Yes
↑ mean difference in the bilateral
semispinalis capitis thickness in cases
↓ mean difference in the bilateral
semispinalis capitis thickness in painful
side

Neck pain Rahnama
(2015) [52]

Multifidus muscle thickness change w. shoulder
MVC in 6 directions
Multifidus muscle thickness: baseline: NS,
cases vs. controls;
During MVC: significant interaction of group x
force, controls > cases (p = 0.03). NS, cases vs.
controls group x direction; 3- & 4-way
interactions involving group.

Yes
↓ multifidus muscle thickness increase in
cases during isometric MVC
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Table 1 Are there quantitative imaging biomarkers associated with the presence of neck and shoulder MSDs? (Continued)

Neck pain Sheard
(2012) [51]

Differences in water relaxation values (T2
relaxation) quantified from scans before and
after exercise were calculated (T2 shift) as a
measure of SA muscle activity
T2 shift: significant effect for level (p = .03) and
significant group × level interaction (p = .04)
but no significant main effect for group
(p = .59). Post hoc T2 shift: cases > controls at
the T6 level (P = .02) only.

Yes
↑ T2 shift at T6 in cases

Shoulder disorders and symptoms

Degenerative rotator cuff lesion Biberthaler
(2003) [54]

Mean functional capillary density, mean
capillary diameterMean functional capillary
density: lesion < control tissue (p < 0.05).
Mean capillary diameter: NS, lesion vs. control
tissue (p > 0.05).

Yes
↓ mean functional capillary density in
lesion tissue

Rotator cuff tear (full thickness) Chang (2014)
[56]

Biceps long tendon (BLT) width, thickness,
flattening ratio (width/thickness), cross-sectional
area, echogenicity ratio
BLT width, echogenicity ratio: NS, cases vs.
controls
BLT thickness: cases > controls, p < 0.01.
BLT flattening ratio: cases < controls, p < 0.01.
BLT cross-sectional area: cases > controls,
p < 0.01.

Yes
↑ BLT thickness in cases
↓ BLT flattening ratio in cases
↑ BLT cross-sectional area in cases

Rotator cuff tear Choo (2014) [57] Rotator cable thickness, width
Rotator cable thickness: difference among 4
groups (see shoulder tendinosis - Choo),
p < 0.001; post-hoc analysis – full-thickness tear
> normal, p < 0.001.
Rotator cable width: difference among 4 groups
(see shoulder tendinosis - Choo), p < 0.001;
post-hoc analysis – full-thickness tear > normal,
p < 0.001; partial-thickness tear > normala.

Yes
↑ rotator cable thickness in full-thickness
tears
↑ rotator cable width in full-thickness
tears
Perhaps
↑ rotator cable width in partial-thickness
tears

Rotator cuff tear Funakoshi
(2010) [55]

Vascularity in 4 ROIs: articular & bursal sides of
supraspinatus tendon, medial & lateral sides
of bursa
Non-injected side: cases (RCT) < controls,
p < 0.0001, in articular & bursal side of the
supraspinatus tendon. Injected side: cases
(contralateral to RCT) < controls, p < 0.0001,
in articular & bursal side of the supraspinatus
tendon. Cases vs. controls, NS, in medial and
lateral side of bursa.

Perhaps
↓ vascularity in articular & bursal sides
of supraspinatus in non-injected (rotator
cuff tear) side in cases, but may be
attributed to age.
↓ vascularity in articular & bursal sides
of supraspinatus in injected (rotator
cuff intact) side in cases, but may be
attributed to age.

Rotator cuff tear Hirano (2006)
[39]

Full vs. partial rotator cuff tear, rotator cuff tear
length, amount of subacrominal-subdeltoid
bursal fluid
Proportion of full & partial tears, NS.
Proportion in categorical size of tears, NS.
amount of subacrominal-subdeltoid bursal
fluid, NS .

No

Rotator cuff tear Karthikeyan
(2015) [58]

Total blood flow in 4 supraspinatus zones, in
anteromedial zone, in posteromedial zone
Total blood flow in 4 supraspinatus zones:
cases (including shoulder impingement – see
below) < controls, p = 0.001.
Anteromedial supraspinatus zone: full-thickness
tears < controls, p = 0.02; partial-thickness tears
vs. controls, NS.
Posteromedial supraspinatus zone: full-thickness
tears < controls, p = 0.04; partial-thickness tears
vs. controls, NS.

Yes
↓ supraspinatus blood flow in cases
↓ anteromedial supraspinatus blood
flow in full-thickness tears
↓ posteromedial supraspinatus blood
flow in full-thickness tears
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Table 1 Are there quantitative imaging biomarkers associated with the presence of neck and shoulder MSDs? (Continued)

Rotator cuff tear (full-thickness) Keener (2015)
[35]

Baseline rotator cuff tear width; Width
enlargement (defined as ≥ 5 mm compared
with that at baseline) percentage
Baseline rotator cuff tear width: rotator cuff
tear with anterior supraspinatus cable disruption
> rotator cuff tear with anterior supraspinatus
cable intact, p < 0.0001.
Width enlargement percentage: NS, rotator
cuff tear with anterior supraspinatus cable
disruption vs. rotator cuff tear with anterior
supraspinatus cable intact .

Yes
↑ baseline rotator cuff tear width with
anterior supraspinatus cable disruption.

Rotator cuff tear Mall
(2010) [33]

Rotator cuff tear length, tear width, tear area,
rate of substantial tear progression
(transformation of a partial-thickness tear into
a full-thickness tear or a size increase of >
5 mm in either the width or the length of a
full thickness tear compared with that at the
time of enrollment)
Time of enrollment:
full-thickness tear width: symptomatic >
asymptomatic, p = 0.02;
tear length, tear area, NS.
Change between visit 1 & visit 2 (see paper
for definitions):
Shoulder remained asymptomatic:
NS, tear length, width, area.
Shoulder became symptomatic:
tear length: visit 2 > visit 1, p = 0.008.
tear width: visit 2 > visit 1, p = 0.01 tear area:
visit 2 > visit 1, p = 0.006.
Rate of substantial tear progression:
symptomatic > asymptomatic, p < 0.01

Yes
↑ full-thickness tear width at enrollment
in those who later became symptomatic
in asymptomatic shoulder.
↑ tear length, width, & area at visit 2 vs.
at visit 1 in those who became
symptomatic in asymptomatic shoulder.
↑ rate substantial tear progression in in
those who became symptomatic in
asymptomatic shoulder.

Rotator cuff tear Moosmayer
(2013) [36]

Rotator cuff tear size in anteroposterior plane,
in mediolateral plane, tear size increase in
anteroposterior plane, in mediolateral plane.
Rotator cuff tear size in anteroposterior plane:
baseline: NS, symptomatic vs. asymptomatic;
3-year follow-up: symptomatic > asymptomatic,
p = 0.02
Rotator cuff tear size in mediolateral plane:
baseline: NS, symptomatic vs. asymptomatic;
3-year follow-up: NS, symptomatic vs.
asymptomatic.
Tear size increase in anteroposterior plane: NS,
symptomatic vs. asymptomatic.
Tear size increase in mediolateral plane: NS,
symptomatic vs. asymptomatic.

Yes
↑ rotator cuff tear size in anteroposterior
plane at follow-up in tears that became
symptomatic

Rotator cuff tear (partial & full)
or rotator cuff disease

Keener (2015)
[34]

Rotator cuff tear enlargement (see paper for
definition)
Tear enlargement in 49%; median time to
enlargement = 2.8 yrs. tear enlargement: assoc.
w. final tear type, p < 0.05: full vs. control,
HR = 4.17; partial vs. control, HR = 2.73; full vs.
partial, HR = 1.53 (all p < 0.05, no CI given).
New shoulder pain in 46%; median time to
pain = 2.6 yrs. shoulder pain assoc. w. final
tear type, p < 0.05. Assoc. w. tear enlargement,
HR = 1.66, p < 0.05. 63% became painful
before or at tear enlargement; 22% became
painful later.

Yes
↑ risk tear enlargement in full-tears vs.
controls, in partial tears vs controls, in
full-tears vs. partial tears.
↑ risk new shoulder pain w. tear
enlargement.
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Table 1 Are there quantitative imaging biomarkers associated with the presence of neck and shoulder MSDs? (Continued)

Rotator cuff tear Terabayashi
(2014) [59]

Difference in blood flow peak systolic velocity
(PSV), resistance index (RI) between sides
Difference between sides in PSV in BA: NS, in
any group.
Difference between sides in PSV in AHCA:
affected > unaffected side in rotator cuff tear
with night pain, p < 0.001. NS, other groups.
Difference between sides in RI in BA: NS, in
any group.
Difference between sides in RI in AHCA:
affected < unaffected side in rotator cuff tear
with night pain, p < 0.01.

Yes
↑ PSV in AHCA in affected vs unaffected
side in rotator cuff tear with night pain.
↓ RI in AHCA in affected vs unaffected
side in rotator cuff tear with night pain.

Supraspinatus tendinopathy Arend (2014) [63] Maximal supraspinatus tendon thickness (MSTT)
MSTT: cases > controls, p < 0.05

Yes
↑ MSTT in cases

Rotator cuff tendinitis Cay (2012) [60] Subacromial distance, humeral head diameter,
Glenoid APD, glenoid articular surface diameter
Sagittal subacromial distance: cases < controls,
p < 0.001
humeral head diameter, glenoid APD, axial
glenoid/humerus, and axial glenoid minus
humerus, NS in cases vs controls.
coronal diameter of humerus: cases < controls,
p = 0.02.
coronal glenoid/humerus, coronal glenoid
minus humerus: NS in cases vs controls.

Yes
↓ sagittal subacromial distance in cases
↓ coronal diameter of humerus in cases

Rotator cuff tendinosis Choo (2014) [57] Rotator cable thickness, width
Rotator cable thickness: difference among 4
groups (see rotator cuff tear - Choo), p < 0.001;
post-hoc analysis – NS, tendinosis vs controls.
Rotator cable width: difference among 4 groups
(see rotator cuff tear - Choo), p < 0.001;
post-hoc analysis – tendinosis > normal,
p < 0.05a.

Perhaps
↑ rotator cable width in tendinosis

Rotator cuff tendinitis Rechardt (2010)
[61]

Carotid artery intima-media thickness
Carotid artery imtima-media thickness: NS, in
males and females.

No

Shoulder tendinopathy Joensen (2009)
[62]

Supraspinatus tendon thickness
Tendon thickness: symptomatic side >
asymptomatic side, p < 0.01.

Yes
↑ tendon thickness in symptomatic side

Frozen shoulder
(Adhesive capsulitis)

Li (2011) [64] CHL thickness
CHL thickness: cases > controls, p < 0.001.

Yes
↑ CHL thickness in cases

Frozen shoulder
(Adhesive capsulitis)

Michelin (2013)
[67]

Joint capsule thickness
Joint capsule thickness: cases > controls,
p < 0.0001

Yes
↑ joint capsule thickness in cases

Frozen shoulder
(Adhesive capsulitis)

Song (2011) [65] Joint capsule thickness in the axillary recess,
enhancing portion of the axillary recess
thickness, rotator interval thickness
Axillary recess: Joint capsule thickness: cases
> controls, p < 0.001.
Axillary recess enhancing portion thickness:
cases > controls, p < 0.001.
Rotator interval Enhancing portion thickness
cases > controls, p < 0.001.

Yes
↑ axillary recess joint capsule thickness
in cases
↑ Axillary recess enhancing portion
thickness in cases
↑ Rotator interval Enhancing portion
thickness in cases

Frozen shoulder
(Adhesive capsulitis

Zhao (2012) [66] CHL thickness, articular capsule thickness
CHL thickness: cases > controls, p < 0.001 .
articular capsule thickness: cases > controls,
p < 0.05.

Yes
↑ CHL thickness in cases
↑ articular capsule thickness in cases

Shoulder impingement
syndrome

Daghir (2011)
[71]

Subacromial-subdeltoid bursal thickness Greatest
thickness in any view: NS cases vs. controls. Thickness
in shortaxis supraspinatus view: cases > controls, p =
0.0009. Thickness in long-axis supraspinatus view: NS
cases vs. controls.Thickness in long-axis subscapularis
view: NS cases vs. controls.

Yes
↑ subacromial-subdeltoid bursal
thickness in cases on shortaxis
supraspinatus view
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Table 1 Are there quantitative imaging biomarkers associated with the presence of neck and shoulder MSDs? (Continued)

Shoulder impingement
syndrome

Hébert (2003)
[68]

AHD
Cases vs. contralateral control:
Flexion: main effect of group, p < 0.01, and
no interaction with position. Post hoc
comparisons: cases < controls at 70, 90, 110
& 130 degrees, p < 0.01.
Abduction: main effect of group, p < 0.01, no
interaction with position. Post hoc comparisons:
cases < controls at 80, 90, p < 0.05 and 110
degrees, p < 0.01.
Cases vs. contralateral control vs. asymptomatic
controls:
Flexion - main effect of group, p < 0.0001,
(position effect, p < 0.0001) interaction with
position, p = 0.01. Post hoc comparisons: cases
< asymptomatic controls at 90 & 110 degrees,
p < 0.01. NS contralateral control vs
asymptomatic controls, all positions.
Abduction - main effect of group, p = 0.052.
Post hoc comparisons: cases < asymptomatic
controls at 90 & 110 degrees, p < 0.01. NS
contralateral control vs asymptomatic controls,
all positions.

Yes
↓ AHD in cases at 70, 90, 110, 130
degrees flexion vs. contralateral control
↓ AHD in cases at 80, 90, 110 degrees
abduction vs. contralateral control
↓ AHD in cases at 90, 110 degrees
flexion vs. asymptomatic controls
↓ AHD in cases at in 90, 110 degrees
abduction vs. asymptomatic controls

Shoulder impingement
syndrome

Karthikeyan
(2015) [58]

Total blood flow in 4 supraspinatus zones, in
anteromedial zone, in posteromedial zone
Total blood flow in 4 supraspinatus zones:
cases (including rotator cuff tears – see above)
< controls, p = 0.001.
Anteromedial supraspinatus zone: shoulder
impingement < controls, p = 0.01.
Posteromedial supraspinatus zone: shoulder
impingement < controls, p = 0.03.

Yes
↓ supraspinatus blood flow in cases
↓ anteromedial supraspinatus blood
flow in cases
↓ posteromedial supraspinatus blood
flow in cases

Shoulder impingement
syndrome

Leong (2012) [69] AHD, supraspinatus tendon thickness
AHD: NS group effect, p = 0.08
Supraspinatus tendon thickness: group effect,
p = 0.002, post-hoc analysis: control volleyball
players > controls, p < 0.001; cases > controls:
p = 0.02; NS, control volleyball players vs. cases.

Yes
↑ supraspinatus tendon thickness in
cases vs non-volleyball player controls

Shoulder impingement
syndrome

Park (2007) [70] Difference in mean skin temperature btwn sh
sides in 5 ROIs
Difference in mean skin temperature btwn
sh sides
anteromedial ROI: cases > controls, p = 0.004.
anterolateral: cases > controls, p = 0.001.
posteromedial: cases > controls, p = 0.013.
posterolateral: cases > controls, p = 0.030.
lateral: cases > controls, p = 0.039.

Yes
↑ difference in mean skin temperature
btwn sides in all 5 ROIs in cases

Shoulder pain w. rotator cuff
disease (multiple diagnoses)

Kalra (2010) [40] AHD
No group effects at rest (p = 0.43) or 45
degrees abduction (p = 0.84). No interaction
between group and posture.

No

Shoulder pain O’Sullivan (2012)
[41]

Trapezius muscle thickness
% change in thickness during contraction vs.
rest: NS btwn cases & controls in any of the 4
trapezius regions, at 90 degrees or 120 degrees
abduction.
Muscle thickness difference between sides at
rest or during contractions in cases: NS in any
of the 4 trapezius regions, at 0, 90, or 120
degrees abduction.

No
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Table 1 Are there quantitative imaging biomarkers associated with the presence of neck and shoulder MSDs? (Continued)

Shoulder pain Rechardt
(2010) [61]

Carotid artery intima-media thickness
Carotid imtima-media thickness, NS in males
and females. For each standard deviation
increase in carotid IMT, risk of unilateral or
bilateral sh pain, OR = 1.4 (95% CI 1.0–1.9) for
males 60 + .

Perhaps
↑ carotid artery intima-media thickness
increases odds of shoulder pain in
males 60+

Shoulder pain
(internal impingement pain)

Tuite (2007) [72] Labral length, thick-capsule labrum length,
posterior recess angle
Labral length: cases > controls, p = 0.001.
Thick-capsule labrum length: cases > controls,
p < 0.001. Posterior recess angle: cases >
controls, p = 0.002. MR arthrogram: greater
(dichotomized) glenohumeral internal rotation
deficit (GIRD): labral length, thick-capsule
labrum length, posterior recess angle, NS.

Yes
↑ labral length in cases
↑ thick capsule labral length in cases
↑ posterior recess angle in cases

Neck/shoulder disorders and symptoms

Neck/shoulder pain Hallman (2011)
[80]

Muscle blood flow (MBF)
During HGT: MBF cases < controls (p = 0.02 -
ipsi; p = 0.04 - contra). After HGT: MBF cases
< controls (p = 0.001 - ipsi; p = 0.003 - contra).
During CPT: increase in MBF cases < controls
(p = 0.04 - ipsi); NS, contra. After CPT: increase
in MBF cases < controls (p < 0.05 - ipsi); NS,
contra.

Yes
↓ MBF in cases during & after HGT in
ipsi- and contralateral sides.
↓ increase in MBF during and after CPT
in ipsilateral side.

Neck/shoulder pain Nilsen (2007) [42] Finger blood flow
Finger blood flow: baseline, NS. Response to
stressful task: group x time (baseline, 0–10 min,
50–60 min) interaction, p = 0.02. Post-hoc
comparison: controls vs. cases: p = 0.35.

No

Neck/shoulder pain Shiro (2012) [81] ΔOHb, ΔHHb, ΔTHb from baseline
ΔO2Hb: cases < controls during Relax 3
(p < 0.01) & recovery (p < 0.05). ΔHHb: NS,
cases vs. controls. ΔTHb: cases < controls
during Relax 2 & Relax 3 in R trapezius
(p < 0.05); cases < controls: each Relax &
recovery in L trapezius (all p < 0.05, except
Relax 2 & Relax 3, p < 0.001).

Yes
↓ ΔO2Hb in cases during Relax 3 &
recovery.
↓ ΔTHb in cases during Relax 2 & Relax
3 in R trapezius; during each Relax &
recovery in L trapezius

Neck/shoulder pain Strøm (2009) [43] Muscle blood flow
At start of work task: cases vs controls, NS
difference in blood flow increase in either
active or contralateral trapezius. Blood flow
during 15 min of recovery in active &
contralateral trapezius: cases > controls
(p = 0.05).

No

Neck/shoulder pain Takiguchi (2010)
[79]

Minimal & maximal standardized uptake values
(SUV) of [18F]fluorodeoxyglucose (18F–FDG)
Trapezius: mean SUVmax, mean SUVmin: cases
< controls, p < 0.0001. Presence/absence of
neck/shoulder pain and mean SUVmax (R2
= 0.16, p < 0.0001), and for SUVmin(R2 = 0.26,
p < 0.0001), after adjusting for age, gender,
smoking status, and diabetes.
Gluteus maximus: mean SUVmax, mean SUVmin:
NS, cases vs. controls mean. Presence/absence
of neck/shoulder pain and mean SUVmax or
SUVmin, NS.

Yes

Cervicobrachial pain syndrome Larsson (1998)
[114]

Muscle blood flow
Unilateral pain patients: muscle blood flow:
painful < asymptomatic side, p = 0.01; painful
< control, p = 0.0009.

Yes
↓ blood flow in painful side in unilateral
cases
↓ blood flow in cases
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patients with unilateral rotator cuff tears with night
pain, increased peak systolic velocity and decreased
resistance index in the anterior humeral circumflex
artery was observed in the symptomatic side in com-
parison to the asymptomatic side [59].
Initially asymptomatic full-thickness rotator cuff

tears were examined in two unique longitudinal co-
horts. Increased tear dimension and tear progression
rate was found in asymptomatic rotator cuff tears that
became symptomatic versus those that remained
asymptomatic [33]. In this same cohort, Keener et al.
[34] found an increased tear enlargement risk in
asymptomatic full-thickness tears and in asymptom-
atic partial-thickness tears versus those with rotator
cuff disease, but no tear. In the other longitudinal

study, greater rotator cuff tear size was observed in
the anteroposterior plane in tears that became symp-
tomatic at 3-year follow-up, although there was no
difference in the tear size at baseline [36]. No such
increase was observed in the other planes examined.
In a cross-sectional study, there was no difference be-
tween symptomatic and asymptomatic rotator cuff
tears in subacromial-subdeltoid bursal fluid amount,
proportion of full- or partial-thickness tears, or tear
size [39].
Concommitant to rotator cuff tears, increased dimen-

sions been observed in particular anatomical structures.
Greater rotator cable (a fibrous band spanning the in-
sertions of the supraspinatus and infraspinatus) width
and thickness were observed in those with full-thickness

Table 1 Are there quantitative imaging biomarkers associated with the presence of neck and shoulder MSDs? (Continued)

Trapezius myalgia Acero (1999) [74] Relative blood volume
ANOVA - main effect for group, case < control,
during 61–120 s of cold pressor stimulation,
p = 0.04. All other time points group NS.

Yes
↓ relative blood volume in cases during
61–120 s of cold pressor stimulation.

Trapezius myalgia Andersen (2010)
[44]

ΔOHb, ΔHHb, ΔTHb from baseline
ANOVA - main effect of time for all 3ΔxHb
(p < 0.0001), group x time interaction for OHb
(p < 0.05). Group effect NS for HHb & THb.
Group effect p-value for OHb not stated. OHb
after exercise increase from baseline: cases
< controls, p = 0.05.

No

Trapezius myalgia Cagnie (2012)
[75]

Oxygen saturation, muscle blood flow
Oxygen saturation: MANOVA - main effects
of time, muscle part, and interaction muscle
part x group (p = 0.049). Post hoc cases <
controls in L & R middle trapezius at all time
points p = 0.03, except 40 min for R middle
trapezius (NS). Blood flow: MANOVA - main
effects of time, muscle part, and no interaction
muscle part x group. No group effect.

Yes
↓ oxygen saturation in L & R trapezius
at all but 1 time point.

Trapezius myalgia Flodgren (2010)
[76]

Muscle oxygenation
Muscle oxygenation percentage decreased
during work (P = 0.02), and returned to
baseline during recovery.

Perhaps
No control subjects were included in
this study. Authors conclude normal
response in these cases when
comparing them to a previous similar
study with normal subjects (see
Flodgren (2005)).

Trapezius myalgia Peolsson (2008)
[45]

Strain rate, strain rate RMS - before provocation,
after provocation, difference after - before
NS cases vs. controls: strain rate, strain rate
RMS - before provocation, after provocation,
difference after - before. After factor analysis
with strain rate and strain variables (not
velocity variables), followed by clustering,
distribution of cases and controls differed,
p = 0.05. Examination of factors indicated that
post-provocation – most cases have lower
levels of strain rate & strain after pain
provocation compared with most controls.

No

Trapezius myalgia Sjøgaard (2010)
[77]

ΔOHb, ΔHHb, ΔTHb from baseline
Cases: OHb 35 min after start of peg board
task < baseline, p < 0.05. Controls: OHb not
different from baseline. Other OHb, HHb, and
THb similar results for cases and controls.

Yes
↓ OHb (vs. baseline) 35 min after start
of peg board task in cases, but no
change in controls.

a: result significant in 1 of 2 radiologists
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rotator cuff tears than in healthy subjects [57]. In full-
thickness rotator cuff tears, the biceps long tendon
(BLT) showed increased thickness and cross-sectional
area, and decreased BLT flattening ratio (width/thick-
ness) in comparison to controls [56]. In the first longi-
tudinal study referred to above, greater rotator cuff tear
width at baseline was observed in those with anterior
supraspinatus cable disruption vs. those without such
disruption [35]. However, no difference in tear width en-
largement percentage was observed in a minimum of
2 years later.

Rotator cuff tendinitis (5 studies)
Five studies examined rotator cuff tendinitis [57, 60–63].
Decreased subacromial distance and humerus diameter
[60] were observed in cases. Joensen et al. [62] found in-
creased supraspinatus tendon thickness in cases’ symp-
tomatic side, while Arend et al. [63] observed a greater
maximal supraspinatus tendon thickness in cases.
Greater rotator cable width was observed in rotator cuff
tendinosis than in healthy subjects [57]. No difference in
carotid artery intima-media thickness was seen in rota-
tor cuff tendinitis vs. controls [61].

Adhesive Capsulitis (4 studies)
Four studies examined adhesive capsulitis (frozen shoul-
der) [64–67]. Increased coracohumeral ligament [64, 66],
articular capsule [66], and axillary recess joint capsule
thicknesses [65, 67] were observed in cases. Increased
axillary recess and rotator interval contrast enhance-
ment, along with axillary recess thickening were ob-
served [65].

Shoulder impingement syndrome (5 studies)
Five studies investigated shoulder impingement syn-
drome [58, 68–71]. Increased supraspinatus tendon
thickness was observed [69]. Decreased acromiohumeral
distance (i.e., subacromial distance) was found in one
study [68], but not in another [69]. Park et al. [70] found
a difference in mean skin temperature between sides (in
unilateral shoulder impingement syndrome). Decreased
overall supraspinatus blood flow was observed in cases,
with less blood flow in specifically in the medial portions of
the supraspinatus [58]. Increased subacromial-subdeltoid
bursal thickness was observed in one imaging view in
cases [71].

Shoulder pain (4 studies)
Four studies examined shoulder pain [40, 41, 61, 72]. As
the diagnoses were non-specific, we were unable to place
them into one of the other more specific categories.
Tuite et al. [72] saw an increased labral length, thick
capsule labral length and posterior recess angle in cases.
No difference was seen in acromiohumeral distance

(AHD) between cases and controls at rest or at 45 de-
grees abduction [40]. Neither was any difference ob-
served between groups in percent change in trapezius
muscle thickness between rest and during muscle con-
traction with shoulder abduction [41]. Rechardt et al.
[61] saw increased carotid artery intima-media thickness
in males 60+ with shoulder pain, but not in females or
in younger cases.

Trapezius myalgia, cervicobrachial syndrome and other
neck/shoulder pain (12 studies)
Seven studies examined trapezius myalgia and cervico-
brachial syndrome, in which muscle hemodynamics,
muscle oxygenation or muscle velocity biomarkers were
assessed in the trapezius [44, 45, 73–77]. Decreased
muscle blood flow was observed in cases versus controls
and on the painful side in unilateral cases [78]. A de-
crease was found in muscle relative blood volume during
cold pressor stimulation [74], and oxygen saturation was
reduced at baseline and in response to typing [75]. In re-
sponse to an upper extremity physical task, decreased
oxygenated hemoglobin (compared to baseline) was ob-
served in the trapezius in cases, but not controls [77].
No difference in change in trapezius blood flow, or in
oxygenated or deoxygenated hemoglobin in response to
ergometer exercise was found [44]. Lastly, there was no
change in trapezius strain rate/strain rate RMS, a muscle
velocity measure, between cases and controls in re-
sponse to a provocative upper extremity exercise [45].
Five studies examined neck/shoulder pain [42, 43, 79–81].

Decreased trapezius blood flow was seen during and
after hand grip and cold pressor tests [80]. Decreased
trapezius oxygenated hemoglobin and relative blood
volume was observed in response to isometric trapezius
contractions [81], but no difference in trapezius blood
flow was found in response to a computer work task
[43]. Nilsen et al. [42] saw no decrease in finger blood
flow in response to a stressful task. Minimal and max-
imal standardized uptake values of [18F]fluorodeoxy-
glucose (18F–FDG), glucose metabolism indicator
evaluated by PET/CT were lower in trapezii of cases
versus controls, but no difference was observed in the
control gluteus maximus, even after adjusting for age,
gender, smoking status and diabetes [79].
In summary, a) neck muscle size appeared to be de-

creased in neck pain, and b) reduced blood flow, relative
blood volume and reduced oxygen saturation was ob-
served in the trapezius at rest and in response to upper
extremity tasks with myalgia and neck/shoulder pain.

Are there quantitative imaging biomarkers associated
with the severity of neck and shoulder MSDs?
Five of eight studies demonstrated a relationship between
MSD severity and quantitative imaging biomarkers
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(Table 2). Four studies investigated a quantitative im-
aging biomarker in relation to a severity score or dis-
ease stage assessment determined during a physical
examination. Neck Disability Index (NDI) was nega-
tively correlated with longus colli cross-sectional area
(CSA) and anterior-posterior distance in neck pain
[48]. No correlation was observed between NDI and
trapezius skin temperature [37] or with fat levels in
cervical extensor muscles [46]. In rotator cuff tears or
rotator cuff disease, American Shoulder and Elbow
Score (ASES) was significantly decreased with advan-
cing tear type, and with incident pain in the asymp-
tomatic shoulder [34]. Simple shoulder test score
(SST) was similarly reduced.
Six of eight studies solicited pain ratings from partici-

pants through a VAS or other means. Three neck/shoul-
der pain studies investigated pain severity. In Takiguchi
et al. [79], minimal and maximal standardized 18F–FDG
uptake values, a glucose metabolism measure, were
negatively correlated with VAS pain. In one study, max-
imal pain response was correlated with finger skin blood
flow during the first 10 min of a mentally stressful task
in cases, but not controls [42]. In another study, in cases
(but not controls) pain and blood flow was positively
correlated in the active trapezius, and negatively corre-
lated in the contralateral trapezius at the end of a
90 min computer task [43]. No association was observed
between pain rating and longus colli CSA, anterior-
posterior distance, or other quantitative imaging param-
eters examined [48]. Neither was VAS pain related to
mean skin temperature differences in shoulder impinge-
ment syndrome [70].
In summary, very few studies reviewed found associa-

tions between quantitative imaging biomarkers and neck
and shoulder MSD severity. As might be inferred from re-
sults to our first research question, functional impairment
in neck pain may be associated with reduced longus colli
dimensions. Functional impairment in rotator cuff disease
in an asymptomatic shoulder may be correlated with in-
creasing tear type and incident shoulder pain. In neck/
shoulder syndromes, increased pain may be associated with
reduced glucose metabolism and increased blood flow in
the active trapezius in response to a computer task.

Discussion
In this study we have summarized the current state of
quantitative medical imaging marker research in neck
and shoulder MSDs by conducting a comprehensive
systematic review. A critical approach was used to
synthesize results for the two research questions: 1) are
there quantitative medical imaging markers associated
with the presence of neck and shoulder MSDs, and 2)
are there quantitative medical imaging markers associ-
ated with the severity of neck and shoulder MSDs?

Within the studies of sufficient quality, we found associ-
ations between quantitative medical imaging biomarkers
and neck and shoulder MSDs, and were able to identify
several commonalities.
Evidence was found for the following quantitative

imaging biomarkers: With respect to referents, de-
creased neck muscle size was observed in cases with
neck pain [47–50, 52]. Reduced trapezius blood flow
and relative blood volume [73, 74, 80, 81] and oxygen
saturation at rest and in response to upper extremity
tasks [75, 77, 81] occurred with trapezius myalgia and
neck/shoulder pain. Lastly, reduced blood flow and
altered vascular parameters were observed in rotator
cuff tears [54, 55, 58, 59].
In contrast to the first research question, associations

between biomarkers and the severity of neck and shoul-
der MSDs were observed in only a few studies. Most
notably, minimal and maximal standardized 18F–FDG
uptake values, a biomarker of trapezius metabolism in
neck/shoulder pain, were inversely correlated with pain,
indicating reduced muscle metabolism in this condition.
However, this was found in only one study [79]. The
small sample size resulting in reduced ranges of severity
measures in many studies examining neck and shoulder
MSD severity may have hampered the feasibility of
detecting statistically significant results for our second
research question.
A possible explanation for the decreased size of deep

neck muscles in neck pain cases advanced by several ar-
ticles [47–50] is the development of muscle atrophy due
to a long term reduction in muscle activity through
either pain or reflex inhibition. This explanation is con-
sistent with a smaller change in multifidus muscle thick-
ness during MVC from rest in those with neck pain in
comparison to control subjects [52]. In another study,
cases and controls showed different patterns of muscle
thickness alterations during MVC when compared with
rest [53]. A possible mechanism for activity changes
during muscle pain is the redistribution of activity
from painful muscles or painful areas to adjacent or syn-
ergistic muscles, as described in the pain adaptation
model [82]. Subjects with neck pain showed reduction in
deep neck muscle activity in the longus colli [49]. This
was corroborated by prior studies showing reduced
strength and endurance during neck flexion tests in sub-
ject with neck pain [83, 84]. However, causal relation-
ships cannot be deduced due to the cross-sectional
design of sufficient quality studies.
The pathophysiology associated with reduced blood

flow, relative blood volume and oxygen saturation with
trapezius myalgia and neck/shoulder pain is not clear.
Decreased oxygenation as presented by several studies
[75, 77] may be related to a reduction in oxygen delivery
to the muscle or to increased muscle oxygen
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consumption. Previous studies using muscle microdialy-
sis found increased pyruvate and lactate, metabolites re-
lated to increased anaerobic energy production, in painful
trapezius muscles [77, 85]. Findings of reduced trapezius
muscle blood flow in response to physical load [73, 80, 81]
or pain induced during an experiment [74, 80] does not
oppose the hypothesis of reduced oxygen delivery. Re-
duced blood flow may be attributed to an imbalance be-
tween vasoconstriction and dilatation in muscle
arterioles [86]. This imbalance could be due to aberrant
activation in the sympathetic nervous system or down-
regulation of adrenoreceptors in the arteriole epithe-
lium in patients with MSDs [87]. Indeed, in some
sufficient quality studies in this review, patients with
MSDs show aberrant sympathetic activity compared to
asymptomatic controls [75, 77, 80], although adrenore-
ceptor expression was not investigated. Together, the
reduction in blood flow and oxygen saturation may fa-
cilitate the production of muscle metabolites like lac-
tate, which are known to influence muscle nociceptor
activity.

Limitations of the review
Other techniques besides imaging are available for mea-
suring some of the functional and morphological features
or processes addressed in this review. However, these other
methods for assessing biomarkers were beyond the scope
of the present review. For instance, our inclusion criteria
allowed for articles on photoplethysmography to measure
blood pressure, but not strain-gauge plethysmography.
Although the term “plethysmography” was part of our
search string, no papers were found that utilized strain-
gauge plethysmography in neck or shoulder MSDs. Studies
using plain x-rays to the exclusion of other imaging modal-
ities were excluded. Plain radiographs are best utilized in
evaluating osteoarthritis, fractures, dislocations and other
bone abnormalities, and are not routinely indicated in soft
tissue MSDs [23–26]. However, we may have missed some
biomarkers that could be of interest such as calcifications,
soft tissue swelling, or acromial abnormalities including
variant acromial morphology and acromial spurs.

Methodological limitations in the articles reviewed
Selection bias - response rate
The response rate to participate could be ascertained in
only 15 (31%) of the 49 sufficient quality studies. With-
out response rates, selection bias cannot be adequately
assessed. Hence, it is unknown if the cases and controls
represent the underlying population, or to what extent
they may be comparable. We recommend including re-
sponse rates for both cases and controls in future quan-
titative imaging studies.

Confounding
Approximately half of the reviewed sufficient quality
studies controlled for potential confounders, either
through restriction of study subjects (e.g., by age or gen-
der) or through adjustment in the statistical analysis.
With respect to the quantitative imaging parameters
reviewed here, muscle oxygenation, including in the tra-
pezius, was found to be greater in males than females in
many studies [88–91]. However, gender had no influence
on erector spinae oxygenation in a sustained trunk ex-
tension test [92]. This latter study also found no differ-
ence in relative blood volume with respect to gender.
But, literature is sparse in this area. Muscle oxygenation
and blood volume responses in limb muscles are signifi-
cantly influenced by both age [93] and level of exercise
training [94], yet no study has looked at the effects on
shoulder and neck muscles.
Trapezius muscle size is greater in males than females

[91]. In a biopsy study, Lindman et al. [95] found that fe-
male trapezius muscle fibers have smaller cross-sectional
areas than males, and more type II fibers. Neck muscle
size may also differ by gender. Zheng et al. [96] found a
greater total neck muscle volume in males versus
females. However, the proportion of each muscle volume
examined in comparison to total neck muscle volume
was similar between genders, except for the sterno-
cleidomastoid, longus capitis, and obliqus capitis in-
ferior. Deep neck posterior muscles and semispinalis
capitis cross-sectional areas were larger in males than
females, but not after adjusting for body weight [97]. In
that study, muscle shape ratio did not differ by gender. Nor
were there any differences in muscle dimension by age.
Although several studies suggested that reduced

vascularity in the supraspinatus tendon may be associ-
ated with rotator cuff tears, two of these studies used
much younger controls than cases [55, 58] (see Additional
file 7). Due to the design of these studies, it is difficult to
determine whether the results were due to age or to path-
ology. Rudzki et al. [98] found reduced blood flow in the
supraspinatus tendon in those over 40 years in their study
of asymptomatic rotator cuff tears, which roughly corre-
sponds to the differentiating age between the two groups
in the above studies.
The above findings suggest that (minimally) age, gen-

der, exercise frequency, and BMI should be collected
from study subjects and controlled for, either during
analysis or through selection.

Directions for future research
Despite the similarity of symptoms in neck and neck/
shoulder disorders, there is a marked difference in the im-
aging metrics obtained in studies with these two symptom
designations. Muscle dimensions have been researched in
neck pain, but not in trapezius myalgia and other neck/
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shoulder disorders. Conversely, muscle oxygenation and
relative blood volume have been explored in the trapezius,
but not in other neck muscles. Future research should
examine muscle dimensions in the trapezius, and muscle
oxygenation and relative blood volume in other muscles.
The research on muscle dimension, oxygenation and

relative blood volume has been conducted in subjects
with different MSD labels, i.e., in neck pain, trapezius
myalgia and neck/shoulder pain. Here, we used the diag-
nosis or syndrome name presented in the articles. These
diagnoses or syndrome names are based on the painful
region. However, the division between neck and shoul-
der is not clear. For example, when considering func-
tional anatomy, the neck and upper trapezius could be
considered as the same region thus rendering definitions
of neck and neck/shoulder regions arbitrary. Further-
more, there are suggestions of a possible common
pathophysiological mechanism in these syndromes [99].
As mentioned previously, a majority of shoulder studies

were conducted in older populations (at least one analysis
group with mean age ≥ 50 years), whereas the neck and
neck/shoulder studies were conducted in younger popula-
tions (mean age < 50 years). This could be due partially to
the average age at onset of these disorders. However, given
the potential for a possible spectrum effect [100], it would
be of interest to study a broader range of ages.
Only 12 of the 49 sufficient quality studies in this review

listed the duration of symptoms in patients (range: 9.1–
114 months), all of which durations are chronic by defi-
nition [36, 38, 40, 41, 46, 47, 64, 66, 68, 70, 73, 76, 80].
One review has determined that blood flow increases to
the site of rotator cuff small tears, but that decreased vas-
cularity is observed as tear size increases and the healing
response fails [101]. This suggests that varying results in
vascularity in the rotator cuff tendons may be influenced
by symptom duration. In view of pathophysiological
mechanism research, we recommend that quantitative im-
aging biomarkers be investigated in MSD patients with
shorter symptom durations. We further recommend that
quantitative imaging biomarker study be report the range
of symptoms and their duration.
Although focused on computed tomography imaging

methods, animal models would suggest that different
quantitative imaging biomarkers and findings are present
at different MSD stages [102–105]. In humans, various
quantitative imaging biomarkers reflective of underlying
musculoskeletal changes are valid at different stages of
disease. For instance, the AHD decrease is a late stage
phenomenon. It is detectable in large chronic full-
thickness rotator cuff tears, but not in earlier stages of
rotator cuff disease [106]. The question of which im-
aging modality best captures the particular biomarker
under consideration is beyond the scope of this review.
Determining the most appropriate imaging modality for

a given quantitative imaging biomarker is an essential
area for future research.

Heterogeneity – other considerations
Quantitative imaging has the potential to be unbiased
and precise, particularly in comparison to ordinal scales
such as the Bigliani classification [107] sometimes used
in shoulder impingement syndrome. As with all types of
biomarkers, optimally, a complete analytical evaluation
should be conducted for each quantitative imaging bio-
marker under consideration. This evaluation should in-
clude determination of limit of detection, limit of
quantification, reference values in normal subjects, as
well as assessing the reliability and validity of any such
biomarker [108]. There are unique considerations for
quantitative imaging. Sources of variability include the
instrument/acquisition system, and the image measure-
ment algorithm, as well as the patient [109]. For in-
stance, patient motion may affect the performance of the
imaging acquisition system [110], and image processing
software may include a number of steps, each of which
requires validation [108]. See Raunig et al. [109] for a
thorough review of statistical methods for assessing
technical performance in quantitative imaging. These
technical considerations must be addressed prior to val-
idating the clinical utility of any suggested quantitative
imaging biomarker [108, 109].

Recommendations
Below are our brief recommendations for future quanti-
tative imaging biomarker research:

1. Report the response rate for all analysis groups.
2. Carefully consider and report potential confounders,

gather information on these factors from study
subjects, and potentially control for them through
exclusion or through adjustment in the statistical
analysis.

3. Report symptom duration and/or severity in study
subjects.

4. Clearly describe MSD case definition criteria,
including a description of localization of symptoms.

5. Prioritize quantitative imaging biomarker studies
that are longitudinal.

Conclusions
Based on our comprehensive review, there is limited evi-
dence of an association between quantitative medical
imaging biomarkers and neck and shoulder MSDs. The
most consistent studies suggest that deep neck muscle
size holds promise as a biomarker for neck pain, and
that trapezius blood flow, relative blood volume, and
muscle oxygenation are worthy of consideration as bio-
markers for trapezius myalgia and neck/shoulder pain.
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Further research is warranted. In the meantime, clini-
cians may find value in our findings. For instance, radiol-
ogists may wish to adjust imaging scan planes to allow
better volumetric analysis, and refine protocols to better
characterize blood flow. Some quantitative imaging pa-
rameters, e.g., muscle size and blood flow, are not rou-
tinely included in radiology reports. It may behoov the
clinician to do so. Additionally, epidemiologists may
wish to include these biomarkers in cross-sectional and
prospective studies of neck and shoulder MSDs. Pro-
spective high quality studies are needed as this discipline
moves forward. Future testing should be done with re-
gard to MSD symptom duration and severity. Results
should be reported with consideration to the effects of
potentially confounding factors (minimally including
age, gender, and exercise), and response rates of all ana-
lysis groups should be described so that potential selec-
tion bias may be assessed.
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