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Abstract

Background: Obesity and musculoskeletal pain are strongly related, but there is emerging evidence that body fat,

not body weight, may be a better indicator of risk. There is, therefore, a need to determine if body fat is associated
with musculoskeletal pain as it may improve management strategies. The aim of this systematic review was to investigate
the association between body fat and musculoskeletal pain.

Methods: Seven electronic databases were searched from inception to 8th January 2018. Cross-sectional and longitudinal
studies investigating the association between measures of body fat and musculoskeletal pain were included. All included
articles were assessed for methodological rigour using the Epidemiology Appraisal Instrument. Standardised
mean differences (SMDs) and effect estimates were pooled for meta-analysis.

Results: A total of 10,221 citations were identified through the database searching, which after abstract and
full-text review, yielded 28 unique articles. Fourteen studies were included in the meta-analyses, which found
significant cross-sectional associations between total body fat mass and widespread pain (SMD 0.49, 95% Cl 0.
37-0.61, p<0.001). Individuals with low-back pain and knee pain had a higher body fat percentage than
asymptomatic controls (SMD 0.34, 95% Cl 0.17-0.52, p<0.001 and SMD 0.18, 95% Cl 0.05-0.32, p=0.009,
respectively). Fat mass index was significantly, albeit weakly, associated with foot pain (SMD 0.05, 95% CI 0.
03-0.06, p < 0.001). Longitudinal studies (n=8) were unsuitable for meta-analysis, but were largely indicative
of elevated body fat increasing the risk of incident and worsening joint pain. There was conflicting evidence
for an association between body fat percentage and incident low-back pain (3 studies, follow-up 4-20 years).
Increasing knee pain (1 study) and incident foot pain (2 studies) were positively associated with body fat
percentage and fat mass index. The percentage of items in the EAl graded as 'yes' for each study ranged
from 23 to 85%, indicating variable methodological quality of the included studies.

Conclusions: This systematic review and meta-analysis identified positive cross-sectional associations between
increased body fat and widespread and single-site joint pain in the low-back, knee and foot. Longitudinal studies suggest
elevated body fat may infer increased risk of incident and worsening joint pain, although further high-quality studies are
required.
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Background

Musculoskeletal conditions, manifesting as pain in soft
tissues and joints, are a leading cause of disability [1].
Worldwide, they are second only to mental and behavioral
problems in contributing to the total years lived with
disability [2]. Musculoskeletal pain can lead to an avoid-
ance of physical activity [3] and weight gain [4]. Excessive
weight gain may result in the development of obesity and
there is a strong bidirectional relationship between obesity
and musculoskeletal pain [5], but understanding how
excessive body weight and pain are related is important as
it guides therapy.

The implication that excessive loading of joints is dir-
ectly related to pain likely oversimplifies the complex rela-
tionship between obesity and pain. This is demonstrated
by an abundance of studies with often conflicting findings
regarding the nature of the relationship between mechan-
ical loading and pain [6-10]. Moreover, whilst ground
impact forces are positively related to obesity, lean mass
(i.e. muscle) is negatively associated with impact force and
may be protective, suggesting that body tissues should not
all be considered homogeneous [11].

Obesity is commonly defined as =30 kg/m?* on the body
mass index (BMI) scale, which is calculated by dividing
body weight (kg) by body height (m) squared. This scale,
however, treats all body tissue as homogeneous and it does
not account for either the type or the distribution of body
weight [12]. The BMI is not a good measure of adiposity
(body fatness) as it does not account for age or gender dif-
ferences [13]. Furthermore, given the association between
BMI-defined obesity and musculoskeletal pain extends to
both weight-bearing [14] and non-weight-bearing joints
[15], it follows that the mechanism underpinning this rela-
tionship may extend beyond excessive mechanical loading
alone, which is implied with the BMI. Fat mass index
(EMI) is a more relevant measure in having or predicting
pain [16], suggesting the type of tissue is important. It is
also now well-recognised that adipose tissue is an active
endocrine organ that secretes many active cytokines and
hormones [17], some of which may be related to the
development of musculoskeletal pain.

Recent cross-sectional and longitudinal studies are
beginning to highlight the important role of body com-
position in the development and worsening of joint pain
[18-20]. Body composition can be analysed using a
number of techniques including dual energy x-ray absorp-
tiometry, bioelectrical impedance analysis and skin-fold
thickness, although this method has challenges with
increasing levels of obesity [21]. Whilst much attention is
directed toward the strong association between
BMI-defined obesity and musculoskeletal pain, there are
metabolic [22, 23], structural [24] and psychological
mechanisms [25] that may link adiposity and pain. There
is, therefore, a need to determine whether body fat is
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associated with musculoskeletal pain as this understand-
ing may improve management strategies. The aim of this
systematic review was therefore to investigate the associ-
ation between body fat and musculoskeletal pain.

Methods

This systematic review was conducted in accordance with
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement guidelines [26]. This
systematic review was registered at the International
Prospective Register of Systematic Reviews (PROSPERO)
on 12th August 2017 (http://www.crd.york.ac.uk/PROS-
PEROY/), registration number: CRD42017074289.

Search strategy for identification of studies
The following databases were searched on 9th August
2017: Medline (Ovid); PubMed (non-Medline content
only); Embase (OVID); Scopus; CINAHL (EBSCOhost);
Cochrane Central Register of Controlled Trials; and Web
of Science. All databases were searched from inception to
current date. Reference lists from suitable papers were
also investigated and included prior to applying exclusion
and inclusion criteria. Broad MeSH terms and keywords
were used, combining musculoskeletal pain and body
composition. The search terms were broad to ensure
capture of all relevant studies. Additional file 1 illustrates
the full search strategy used for this systematic review,
and minor modifications to search terms were required
depending on the database searched. Database searching
and registration for automatic e-alerts were also continued
until the review was finalised (8th January 2018).
Following removal of duplicates, two reviewers (TPW
and JBA) applied the predetermined selection criteria to
all articles by reading the title and abstract alone. Where
discrepancies between article selections existed, the re-
viewers discussed these discrepancies to form a consensus,
a third reviewer was not required to arbitrate a consensus
for this review. Articles were then assessed for eligibility
by full-text review.

Eligibility criteria

Articles from English language, peer-reviewed, scientific
journals were eligible for inclusion in this review if they
reported studies that examined the association between
body composition and musculoskeletal pain. Studies were
included if all participants were aged at least 18 years, had
musculoskeletal pain recorded via self-report or question-
naire (or were controls) and had an assessment of body fat.
Studies specifically investigating participants with inflam-
matory conditions or autoimmune diseases were excluded.
Further exclusion criteria were; unclear assessment of mus-
culoskeletal pain or body composition, letters to the editor
and editorials, opinion pieces and non-English language
publications.
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Assessment of methodological quality

All included articles were assessed for methodological
rigour using the Epidemiology Appraisal Instrument
(EAI) [27]. This tool has been shown to demonstrate
good reliability and content validity [28]. A number of
items from the EAI were omitted as they were not
applicable to non-interventional studies (Questions
10,12,20,22-24,35,37,40) as per previous reviews of
observational studies investigating musculoskeletal dis-
orders [29, 30]. The covariates considered important for
questions 11 and 36 were age, gender and a measure of
psychological health. As it is not known if each question
of the EAI is equally weighted, rather than providing a
quality assessment score for each study, a summary score
for each question is reported. A summary (%) of the num-
ber of questions a study scored ‘yes’ on is also reported.

Data extraction and analysis

To reduce the risk of bias, author and publication details
were removed prior to data extraction. Where available
the relevant data (means, medians, standard deviations
(SDs), odds ratios (ORs), relative risks (RRs), confidence
intervals (CIs) and p values) were recorded for each study.
Where available, multivariable OR (95% CI) were
extracted in preference to unadjusted OR (95% CI). For
studies reporting means and standard deviations, effect
sizes (Cohen’s d) and ClIs were calculated. According to
Cohen [31], effect sizes were interpreted as 0.2, small; 0.5,
medium; and 0.8, large. Widespread pain was defined as
>5 painful joints, which is modeled on the criteria of the
American College of Rheumatology [32]. Multi-site pain
was defined as > 1 but <5 painful joints. For those studies
investigating multi-site or widespread pain, the differences
were calculated between the no pain group and the
multi-site / widespread pain group. Meta-analysis was per-
formed where more than one study reported on the same
parameter, grouped by widespread or single-site pain loca-
tion. Only the gender-specific sample size was used when
entering gender-stratified data into the meta-analysis.

The OR and CIs, and SMD (Cohen’s d) were pooled for
meta-analysis by the standard approach, weighted by the
inverse variance method. Odds ratios and Cls were con-
verted to SMDs for meta-analysis [33]. Statistical hetero-
geneity was assessed for each site using the I° statistic.
Potential publication bias was assessed graphically using a
funnel plot [34] and Egger’s regression intercept for
low-back pain, knee pain and foot pain. Both heterogen-
eity and publication bias were considered, accepting the
fact that the power was low because of the small number
of studies for each site. Sensitivity analysis was performed
via the one-study removed test (removal of individual
studies out of the model in turn), which gauges each
study’s impact on the overall pooled effect size. A p-value
less than 0.05 (two-tailed) was considered statistically
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significant. All analyses were conducted using Compre-
hensive Meta Analysis v3.0 (Biostat, NJ, USA).

Results

The initial literature search yielded a total of 10,221
citations, which was reduced to 5026 following the removal
of duplicates. These 5026 articles were screened based on
their title and abstract, where a further 4945 articles were
excluded, leaving 81 articles that underwent full-text review.
After 53 articles were excluded, 28 unique articles were
included in this review [16, 18-20, 35-58]. Twenty-two
articles reported cross-sectional data [16, 18, 20, 35-53] and
eight articles [16, 19, 35, 54—58] provided longitudinal data
(two articles reported both cross-sectional and longitudinal
data [16, 35]). Four articles used participants from the same
study [18-20, 40], and there were three other instances of
articles using data, reporting different outcomes, from the
same study [47, 58, 35, 39, 55] and [38, 42], leaving 21
unique studies. The regions with multiple studies using the
same parameter were widespread, low-back, knee and foot
and thus these were included in the quantitative ana-
lysis (n=14) [16, 35-37, 39-43, 47-49, 51, 52]. All of the
studies included in the meta-analysis were cross-sectional.
There were fewer longitudinal studies, with most studies
only investigating one site (other than low-back) with vari-
able follow up time, therefore these data did not undergo
meta-analysis. Details of study selection have been
recorded (Fig. 1) following the guidelines set by PRISMA.

Study characteristics

A variety of sites for musculoskeletal pain were investi-
gated, including the neck, low-back, knee and foot. The
low-back was the most common region investigated, with
15 articles including this site in their analysis [18, 20, 35—
38, 43, 46-48, 51, 52, 56-58]. Three articles investigated
the association between multi-site / widespread pain and
body composition [18, 35, 36], while another investigated
multiple regions, but stratified the analysis by these
regions [37]. One study [54] used body composition as a
predictor for any injury and thus a specific region was not
investigated. Body composition was analysed with dual
energy x-ray absorptiometry in 13 articles [16, 18-20, 35,
36, 38-43, 55], bioelectrical impedance analysis in 10
articles [37, 44-50, 56, 57], and skin fold thickness in 5
articles [51-54, 58]. Body composition was generally re-
ported as a percentage of body fat (17/28 articles) [37, 39,
43-52, 54-58]. The cross-sectional articles consisted of;
population-based (n=7), clinic-based (n=7), musculo-
skeletal pain (n=5), occupational-based (n=2) and
unknown (n=1). The longitudinal articles were largely
population-based (n=6) along with occupational-based
(n =1) and military-based (n = 1). The longitudinal articles
varied in follow-up from 3 months [54] to > 20 years [58],
but most were between 3 and 5 years.
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Fig. 1 Selection process for inclusion of articles in this review of the association between body fat and musculoskeletal pain

Participant characteristics

The studies included in this systematic review reported
on 12,942 participants, with studies from Asia, Europe,
South America and Australia. Both men and women were
represented in most studies, although gender-specific
studies accounted for >35% of the total [38, 41, 42, 46,
47, 49, 52, 54, 57, 58]. Mean age in the cross-sectional
studies ranged from 20.7 years [50] to 74.4 years [41],
while the longitudinal studies ranged from 19.0 years [54]
to 64.6 years [16]. Most cross-sectional studies included
participants with mean BMIs of < 30 kg/m?, however four
included participants with a mean BMI of >30 kg/m>
[18, 20, 40, 53]. The mean BMI of the participants from
the longitudinal studies ranged from 20.8 kg/m? [54] to
29.6 kg/m” [19].

Methodological quality assessment

The results of the methodological quality assessment are
provided in Additional file 2. The summary scores for
each question ranged from 4 to 96%, with 14/34 ques-
tions scoring above 50%. The percentage of items in the
EAI graded as ‘yes’ for each study ranged from 23 to
85%, indicating variable methodological quality of the
included studies. There were common, strong themes
among the studies with the clear descriptions of the
aims, study design and results reported in most studies
(> 85%). There were, however, a number of consistent
methodological limitations; the reliability and validity of
the instruments used was often under-reported, a
sample size calculation was mostly not reported (96%)
and the generalisability of the findings was questionable
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Study Statistics for each study SMD and 95% Cl
smp Standard Lower Upper
error Variance limit limit Z-Value p-Value
Pan [35) 0.563 0.103 0.011 0.361 0.765 5.463 0.000
Yoo [36] 0.446 0.078 0.006 0.293 0.599 5.707 0.000
Pooled effect estimate  (0.488 0.062 0.004 0.366 0610 7.848 0.000
-1.00 -0.50 0.00 0.50 1.00
Fig. 2 Forest plot of effect sizes and 95% confidence intervals for widespread pain and total body fat relative to controls

in over 80% of the included studies. Whilst there was
adjustment for a number of other variables e.g. smoking,
physical activity, self-reported arthritis, adjustment for all of
the important confounding variables was reported in less
than 30% of the articles [16, 18, 19, 35, 38, 40, 42, 56]. One
article considered psychological health alone [44], one
article considered age alone [58], six articles considered
both age and gender [20, 36, 37, 41, 55, 57]. Only three
articles [16, 40, 42] provided data that were adjusted for the
important confounding variables (age, gender, psychological
health) that were also used in the meta-analyses.

Meta-analysis

Meta-analysis of cross-sectional single-site and widespread
pain studies found significant associations between body
fat and pain (Figs. 2, 3, 4 and 5), summarised in Table 1.
There was a positive medium effect size between total
body fat mass and widespread pain (SMD 0.49, 95% CI,
0.37-0.61, p < 0.001 and P < 0.001, p = 0.366). Single-site
musculoskeletal pain also had positive associations with
body fat. Low-back pain and body fat percentage had a
combined small-medium effect size (SMD 0.34, 95% CI
0.17-0.52, p <0.001), but there was a significant level of
heterogeneity (° = 91.21, p <0.001). Body fat percentage
and knee pain had a small effect (SMD 0.18 95% CI, 0.05—
0.32, p =0.009 and P < 0.001, p = 0.941), while the pooled
EMI and foot pain had a small effect (SMD 0.05, 95% CI,
0.03-0.06, p < 0.001 and I < 0.001, p = 0.564).

Sensitivity analysis

The association between knee pain and body fat percent-
age was not significant when the data pertaining to
women from Scott et al. [39] was removed from the
meta-analysis, (SMD 0.16, 95% CI -0.02-0.34, p = 0.075),
suggesting that the relationship may be mediated by
gender. All other sites remained significant when one
study was removed from the respective model.

Publication bias

No significant publication bias was detected for studies
reporting foot pain or knee pain, with Egger’s regression
intercept (95% CI) of 0.75 (- 2.38-3.87), p =0.412 and -
0.61 (-10.87-9.66), p =0.589, respectively. There was
however a potential for publication bias detected for
studies reporting low-back pain with Egger’s regression
intercept (95% CI) of 3.44 (1.57-5.33), p=0.004.
Widespread pain was reported in only two studies and
was therefore not amenable for the funnel plot test or
Egger’s regression intercept.

Cross-sectional studies not included in the meta-analysis

The cross-sectional studies not included in the
meta-analysis (due to the type of data or the parameter
used) were generally concordant with the overall
findings (Table 1), with the reasons for exclusion in
Additional file 3. Multi-site pain (3 sites) was associated
with FMI in the study by Brady et al. [18]. Neck pain
was associated with body fat percentage in one study

Study Subgroup within study Statistics for each study
swp Standard Lower Upper SMD and 95% Cl
error  Variance limit limit Z-Value p-Value
Hodselmans  [51] 0.540 0.143 0021 0259 0821 3770  0.000 —i—
Spyropoulos  [52] 0.661 0.265 0.070 0141 1.180 2492  0.013 —_— -
Dario [47] 0.077 0.038 0.001 0.003 0.151 2047  0.041
Toda [48] Men 0.271 0.188 0.03 -0.099 0640 1435  0.151
Women 0.267 0.143 0.020 -0.013 0546 1.870  0.062
Sakai [43] Men 1.087 0.165 0.027 0764 1410 6591  0.000 ——
Women 0.334 0.149 0.02 0042 0627 2240 0.025 —i—
Lizuka [37] -0.017 0.013 0.000 -0.042 0.09 -1.286  0.198
Pooled effect estimate 0.343 0.089 0.008 0.169 0518 3.859  0.000 o
.50 0.75 0.00 0.75 1.50
Fig. 3 Forest plot of effect sizes and 95% confidence intervals for low-back pain and body fat percentage relative to controls
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Study Subgroup within study Statistics for each study
SMD Standard Lower Upper SMD and 95% CI
error Variance limit limit Z-Value p-Value
OzerKaya [49] 0.150 0.172 0030 -0.187 0487 0871 0384
Scott [39]  Men 0.167 0.108 0012 -0.044 0378 1555  0.120
Women 0.210 0.107 0011 0000 0420 1961  0.050
Pooled effect estimate 0.182 0.069 0.005 0046 0318 2627  0.009 ‘
1.00 0.50 0.00 0.50 1.00
Fig. 4 Forest plot of effect sizes and 95% confidence intervals for knee pain and body fat percentage relative to controls

\

[45], while temporomandibular pain was not [44]. The
large study by Chou et al. [38] that investigated
low-back pain used the same sample as reported by But-
terworth et al. [42] who investigated foot pain, with both
finding FMI, but not FFMI, to be significantly associated
with pain. Celan et al. [46] studied the relationship be-
tween body fat percentage and low-back pain, but the only
data provided were mean body fat percentage, without con-
fidence intervals or standard deviations and therefore these
data were not amenable for the meta-analysis. lizuka et al.
[37] investigated multiple regions separately (neck / shoul-
der, back and low-back) and their associations between
body fat percentage. Whilst we felt it appropriate to include
the low-back region in the meta-analysis, we did not in-
clude the neck / shoulder and the back region with the
other studies given the difficulty with delineating these re-
gions, particularly the low-back region from the back re-
gion, but we did include the neck / shoulder region in
Table 1. Other studies investigating low-back pain generally
found increased fat mass was associated with pain. The
smaller studies that investigated both knee and shin pain
found non-significant associations between pain and body
fat mass.

Longitudinal studies

Findings from the longitudinal studies (Table 2) were
consistent with the overall theme identified in the
cross-sectional studies, finding increased levels of body fat
predicted future musculoskeletal pain. Higher baseline FMI
was predictive of foot pain in the short term (less than 3
years) [16, 19] in data from both a community cohort (OR
1.06, 95% CI 1.02—1.11) and a musculoskeletal study (OR

1.28, 95% CI 1.04—1.57). In the knee, Jin et al. [55] found an
association between increased fat mass and an increased
relative risk (RR) of pain in either lying in bed, (RR 1.47,
95% CI 1.12-1.93) or sitting (RR 1.46, 95% CI 1.10-1.95),
although knee pain when weight-bearing was not associated
with fat mass. More frequent knee pain at 5.1 years
follow-up was positively associated with higher total fat
mass, and there was an increased risk (95% CI) of consist-
ent (RR 1.89, 95% CI 1.43-2.51) and fluctuating knee pain
(RR 1.78, 95% CI 1.41-2.25). A five-year longitudinal study
by Pan et al. [35] found a significant trend across three
time-points for fat mass and multisite pain, with the num-
ber of painful sites significantly associated with total body
fat mass over 5 years. There was, however, some discord-
ance between the relationship of body composition and
low-back pain, but the larger studies found fat mass to be a
predictor of increased pain and disability following multiple
adjustments [56—58]. A twin study by Dario et al. [57] did
not find a significant relationship between body fat and the
risk of chronic low-back pain in women (n = 314), however
a larger study (n = 4986) by Hussain et al. [56] found higher
body fat at baseline to be predictive of both high pain inten-
sity and high disability in women and men at 5 years
follow-up. Hashimoto et al. [58] also found that men
in the fourth quartile of body fat percentage had a
significant risk of chronic back pain at >20 years
follow up when adjusting for age, smoking, alcohol
consumption and maximal oxygen uptake (OR 2.12,
95% CI 1.13-3.98). One study found that the risk of
developing injury during a three-month training pro-
gram increased in women with an increased body fat
percentage (OR 1.16, 95% CI 1.00-1.34) [54].

Study Statistics for each study
SMD Standard Lower Upper SMD and 95% CI
error  Variance  limit  limit Z-Value p-Value

Walsh  [41] 0.100 0.213 0.046 -0.318 0518 0469  0.639

Walsh.  [16] 0.042 0.010 0.000 0.022 0.063 4.071 0.000

Tanamas [40] 0.082 0.027 0.001 0.030 0134 3.085 0.002 -

Butterworth [42] 0.042 0.018 0.000 0.007 0.078 2324 0.020

Pooled effect estimate (.047 0.009 0.000 0.030 0.063 5.447 0.000 .

-1.00 -0.50 0.00 0.50 1.00

Fig. 5 Forest plot of effect sizes and 95% confidence intervals for foot pain and fat mass index relative to controls
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Table 1 Selected characteristics of the cross-sectional articles included in the review (n =22)%

Study / Sample size, n Age, y BMI, kg/m? Body Parameter  Body Effect OR (CI) Included

country / composition  investigated composition size (Cl) in the

reference assessment (Case, control) Cohen's d meta-
analyses

Widespread pain (2 5 sites)

Pan, 336 Baseline Baseline DXA Total fat 30.0 (9.5) kg, 0.56 N/A Yes
Australia [35] ¢ widespread 63.3 (7.7) 288 (5.3) mass 250 (7.1) kg (0.36-0.76)

pain, 137 widespread widespread

no pain pain, 62.2 pain, 26.2

(7.2) no pain (3.9) no pain

Yoo, Republic 229 60.8 (8.6) 243 (3.2) DXA 19.1 (6.1) kg, 045 N/A Yes
of Korea [36]  widespread 159 (7.5) kg (0.29-0.60)

pain, 618

no pain

Multi-site pain (3 sites)

Brady, 133 479 36.6 DXA FMI 162 (145-179)  N/A N/A No
Australia [18] (104 women), (45.0, 50.7) (34.1,39.2)° kg/m? multi-site

42 multi-site multi-site pain multi-site pain pain, 11.0

pain 27 46.3 (428,500) 284 (252, 31.6) (88-13.1) kg/m?

no pain no pain no pain no pain

Temporomandibular joint pain

Jordani, 299 377 (122) pain  Not stated BIA Body fat N/A N/A 158 No
Brazil [44] (229 women), 359 (136 percentage (0.72-3.48)
159 pain, no pain
70 no pain
Neck pain
Yalcinkaya, 160 446 (10.2) case 284 (4.3) BIA Bodly fat Case Women N/A No
Turkey [45] (80 women), 40.8 (8.0) case percentage  Women: 0.06
40 case, control 283 (3.9) 46.6 (9.6) % (—=0.38-0.50)
40 control control Men: Men
376 (6.0) % 057
Control (0.11-1.01)
Women:
46.0 (9.8) %
Men:

342 (6.0) %
Neck and shoulder pain

lizuka, Japan 273 643 (13.2) 23429 BIA Body fat N/A N/A 0.98 No
[371° (179 women) percentage (0.94-1.03)

Low-back pain

Hodselmans, 101 392 (96) Not stated Skin fold Body fat 304 (82) %, 055 N/A Yes
Netherlands (47 women) percentage 264 (6.1) % (0.27-0.83)
[51]
Spyropoulos, 60 41.7 (7.3) case 27.1 (34) Skin fold 347 (5.1) %, 0.66 N/A Yes
Greece [52] (all women), 422 (73) case 313(52) % (0.13-1.17)
30 case, control 253 (3.1)
30 control control
lizuka, Japan 273 64.3 (13.2) 234 (29) BIA N/A N/A 097 Yes
371 (179 women) (0.93-1.02)
Dario, Spain 687 53.6 (74) pain 277 (5.2) BIA Body fat N/A N/A 1.15 Yes
[47] (all women), 522 (74) no pain percentage (1.01-1.32)
313 pain, pain 26.8 (4.6)
374 no pain no
pain
Toda, Japan 330 Men: 55.6 (8.8) Men: BIA Women 29.7 Women 0.27  N/A Yes
(206 women), case, 57.7 (9.8) 239 (24) (6.8) %, 27.9 (-=0.01-0.54) N/A
[48] 203 case control case, 239 6.7) % Men 0.27
127 control Women: (3.1) control Men 23.8 (= 0.10-0.64)
60.0 (9.2) case, ~ Women: (5.2) %, 22.3
57.6 (8.1) control  22.7 (3.4) 6.1) %
case, 22.7
(3.3) control
Sakai, Japan 660 (311 women), 100 case, 744 (6.0) case, 23.6 (3.2) case, DXA Women: Women: 083 N/A Yes
[43] 560 control 73.2 (7.6) control  24.2 (3.5) control 41.1 (4.1) %, (0.09-1.54) N/A
343 (88) % Men: 1.08

Men: 35.8 (6.7) (0.76-1.40)
%, 27.7 (7.6) %
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Table 1 Selected characteristics of the cross-sectional articles included in the review (n = 22)? (Continued)
Study / Sample size, n Age, y BMI, kg/m? Body Parameter  Body Effect OR (CI) Included
country / composition investigated composition size (Cl) in the
reference assessment (Case, control) Cohen's d meta-
analyses
Celan, 112 (all men), 44.2 (56), 27.7 pain, BIA Case N/A N/A No
Slovenia [46] 76 pain 36 range 31-56 27.9 no pain 264%
no pain Control
25.5%
Urquhart, 135 (113 women), 474 (9.0) 326 (87), DXA Total fat N/A N/A Pain No
Australia [20] 29 high pain, 106 range 25-62 range 18-55 mass intensity
no or low pain 1.19
(1.04-1.38)
Disability
141
(1.20-1.67)
Chou, 820 (all men), 124 62.9 (14.0) 286 (4.5) DXA Total fat High pain 0.34 N/A No
Australia [38]  high pain, 696 no high pain high pain mass disability / (0.15-0.53)
or low pain 581 (17.1) 272 (4.1) intensity
no or low no or low 259 (79) kg
pain pain No or low
disability /
intensity 23.0
(86) kg
Knee pain
Ozer Kaya, 149 (all women), 426 (4.1) case 30.5 (5.3) case BIA Bodly fat 393 (79) %, 381 0.5 N/A Yes
Turkey [49] 52 cases, 97 41.7 (4.2) control 294 (4.6) control percentage  (7.7) % (-0.19-0.49)
controls
Scott, Australia 709 (357 women), Men: 62.0 (7.2) Men: 28.2 DXA Women 40.1 Women 021 N/A Yes
[39] 311 pain, 398 no pain, 63 (7.3) (3.8) pain (5.5%, 39.0 (0.00-042) N/A
pain no pain 270 (3.5) (5.0) % Men 0.17
Women: 61.7 no pain Men 280 (5.2) (—0.04-0.38)
(7.5) pain, 62.0 Women: 282 %, 27.2 (44) %
(7.0) no pain (5.6) pain, 27.0
(4.4) no pain
Sutbeyaz, 56 (32 women), 440 (10.2) 33337) Skin fold Total fat Case -0.57 No No
Turkey [53] 28 cases case case mass 294 (7.2) kg (-=1.10- -0.03)
28 control 43.7 (10.0) 34.8 (3.5) Control
control control 336 (7.5) kg
Shin pain
Sabeti, Iran 35 (gender not stated), 17 21.1 (2.3) case 21.7 (2.7) case BIA Body fat Case 0.68 N/A No
[50] cases 20.7 (2.5) control  20.7 (2.2) control percentage 27.8 (7.2) % (=0.02-1.34)
18 control Control
234 (58) %
Foot pain
Walsh, 88 (all women), 56.6 (10.3) case  29.3 (9.9) case DXA 125 (5.1) kg/mz, 0.10 N/A Yes
Australia [41] 44 cases, 56.7 (6.5) control  27.6 (10.5) 120 (49) kg/m?  (-0.32-0.52)
44 control control
Walsh, 1066 64.6 (10.3) 284 (5.1) DXA N/A N/A 1.08 Yes
Australia [16] (1.04-1.12)
Tanamas, 136 (114 women), 47.5 (9.2) pain 35.1 (7.8) pain DXA FMI N/A N/A 1.16 Yes
Australia [40] 75 pain, 61 477 (8.8) no 284 (7.6) no (1.06-1.28)
no pain pain pain
Butterworth, 796 (all men), 68 (24-90)b 28.0 (4.3) pain DXA N/A N/A 1.08 Yes
Australia [42] 177 pain, 619 pain 27.1 (3.8) no (1.01-1.15)
no pain 57 (25-98)b pain
no pain

OR odds ratio, CI confidence interval, BMI body mass index, kg kilogram, m? metres squared, DXA Dual-energy X-ray absorptiometry, FMI fat mass index, BIA
bioelectrical impedance analysis, N/A not applicable

?Values are mean (SD) unless otherwise stated

®median (range)

‘mean (95% Cl)

dcross-sectional and longitudinal study

“Duplicate study

Discussion

This is the first review to systematically appraise and syn-
thesise studies examining the relationship between body fat

and musculoskeletal pain. This review included single- and
multi-site joint pain and the meta-analyses demonstrated
significant associations between increased fat mass and
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Table 2 Characteristics of longitudinal articles included in the review (n = 8)°
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Study / Follow-up Sample size, n Age, y BMI, kg/m? Body Parameter  Body composition OR (Cl)
country / time (Baseline) composition investigated (Baseline)
reference assessment
Multi-site pain
(0-7 joints)
Pan, 2.6 and 336 Baseline 63.3 (7.7) Baseline 28.8 (5.3) DXA Total fat 30.0 (9.5) kg, 1.06
Australia [35]% 5.1 years  widespread widespread pain, widespread pain, mass 250 (7.1) kg (1.02-1.10)
pain, 137 no 62.2 (7.2) no pain  26.2 (3.9) no pain
pain
Incident
low-back pain
Hussain, 5 years No intensity: 49.2 (10.9) 266 (4.7) BIA Body fat Pain intensity Men
Australia [56] 900 percentage  No:31.7 (11.8) %  Low intensity:
Low intensity: Low: 326 (11.6) % 1.28 (1.09-1.27)
3085 High 36.2 (13.3) % High Intensity:
High intensity: Pain disability 145 (1.19-1.77)
1001 No: 32.1 (11.5) %  Low disability:
No disability: Low: 33.7 (126) % 1.11 (0.92-1.32)
3061 High 374 (133) % High disability:
Low disability: 137 (1.10-1.72)
651 Women
High disability: Low intensity:
482 141 (1.25-1.59)
High intensity:
1.39 (1.22-1.57)
Low disability:
1.20 (1.07-1.35)
High disability:
148 (1.31-1.68)
Dario, Spain 4 years 314 53.7 (7.0), 273 (4.0) BIA 34.1 (7) % Chronic pain:
[57] (all women) range 43-71 0.87 (0.66-1.14)
Activity-limiting
pain: 0.85
(0.62-1.53)
Care-seeking
due to pain:
0.79 (0.59-1.05)
Hashimoto, > 1152 (all men) 280 (4.6) 226 (2.7) Skin fold 14.7 (3.5) % Q1: referent
Japan [58] 20 years Q2: 0.86 (043-
1.71)
Q3: 146 (0.79-
2.72)
Q4:2.12 (1.13-
3.98)
Increasing
knee pain
Jin, Australia 5.1 years 767 624 (7.2) 29.1 (5.3) DXA Body fat Pain increase: 136
[55] (380 women) pain increase pain increase percentage  30.2 (7.8) %, (1.20-1.55)
61.9 (7.0) no 273 (43) no no pain increase:
pain increase pain increase 27.0 (7.8) %
Incident
foot pain
Butterworth, 3 years 51 (37 women), 483 (9.8) 296 (7.9) DXA FMI 12.1 (64) l<g/m2 1.28 (1.04-157)
Australia [19] 11 incident pain, incident pain, incident pain, incident pain,
40 no pain 495 (7.9) no 263 (54) no 87 (4.2) l<g/m2
pain pain no pain
Future
foot pain
Walsh, 4 years 1066 64.6 (10.3) 284 (5.1) DXA FMI 102 (3.9) kg/m? 1.06 (1.02-1.11)

Australia [16]
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Table 2 Characteristics of longitudinal articles included in the review (n = 8)? (Continued)

Study / Follow-up Sample size, n Age, y BMI, kg/m? Body Parameter  Body composition OR (Cl)
country / time (Baseline) composition investigated (Baseline)
reference assessment
Multi-site
injuries
Kodesh, 3 months 158 (all women) 19.0 (18.1-20.2) 20.8 (16.1-32.0) Skin fold Body fat Injured 1.16 (1.00-1.34)
Israel [54] percentageb 237
(20.5-29.2) %
Non injured
225
(14.9-31.5) %

OR odds ratio, C/ confidence interval, BMI body mass index, kg kilograms, m? metres squared, Q quartile, DXA Dual-energy X-ray absorptiometry,

FMI fat mass index, BIA bioelectrical impedance analysis
#Values are mean (SD) unless otherwise stated
Pmedian (range)
“Relative risk (Cl)
cross-sectional and longitudinal study

widespread pain, low-back pain, knee pain and foot pain.
There was also emerging evidence from longitudinal studies
that elevated body fat may infer an increased risk of inci-
dent or worsening joint pain. Thus, musculoskeletal pain
may be a manifestation of excessive fat mass, which exists
beyond excessive mechanical loading.

The association between fat mass and widespread pain
is perhaps the most important finding of this review.
Single-site pain may be confounded by local biomechan-
ical factors or trauma, whereas widespread pain may be
due to the pervasive nature of excessive adipose tissue on
pain, extending beyond local tissue disease to include how
pain may be perceived centrally [59]. The study by Pan
et al. [35] found both cross-sectional and longitudinal
associations with widespread pain and they adjusted for
psychological health in the longitudinal analysis, which is
particularly important given the bidirectional relationship
between depression and pain [25]. Whilst depressive
symptoms are undoubtedly more common in those with
excessive adiposity, there were independent associations be-
tween body fat and pain, particularly in the foot [16, 40, 42].
The foot is the first site in the body to modulate ground re-
action forces, where the bones and soft tissues are subjected
to bending and torsional loads [60]. The weak pooled
estimate for the association between foot pain and body fat
may be attributed to the fact that three of the four articles
included in the meta-analysis adjusted for age, gender and
depression and normalised fat mass for height, while the
other article also matched on age, gender and BMI This
therefore suggests that unless FMI is associated with
specific changes to foot mechanics, which seems un-
likely, that the association of foot pain with obesity
may be metabolically mediated. It is important to
note that the magnitude of the effects were small to
medium in size, suggesting a relatively modest poten-
tial contribution of fat mass to musculoskeletal pain
amongst other known physiological and psychological
factors.

A number of proposed pathways can explain the associ-
ation between body fat and musculoskeletal pain, including
the up-regulation of cytokines secreted by adipose tissue,
referred to as adipokines. Leptin, a pro-inflammatory adipo-
kine predominately expressed by subcutaneous adipose
tissue [61] is associated with bodily pain in women [62] and
leptin levels in both serum [63] and synovial fluid [64] are
associated with osteoarthritis, particularly in women. Leptin
has functional receptors on articular chondrocytes, and
may be involved with cartilage generation [65]. Leptin
signaling, however, may be blunted with adiposity, through
a regulative negative feedback loop [66]. Interestingly,
excessive adiposity may increase leptin secretion, which in
turn may compromise its ability to repair joint cartilage by
a down-regulation in receptor expression [67]. This theory
is supported by an observational study investigating knee
joint changes using magnetic resonance imaging, where
reduced cartilage volume, a hallmark of osteoarthritis, is
associated with increased leptin [68]. Thus, leptin may be
associated with structural joint changes that, at the very
least may predispose the joint to further cartilage failure
and pain.

Other suggested mechanisms linking adipose tissue with
pain, including subclinical inflammation [69, 70]. Tumour
necrosis factor-alpha (TNF-a) is a cytokine involved in the
inflammatory cascade. It is a therapeutic target for the
management of inflammatory arthropathies, and is pri-
marily produced by activated macrophages, but it is also
secreted by adipose tissue [17]. Systemic inflammation is
up-regulated with obesity with the acute inflammatory
phase marker, C-reactive protein (CRP), higher in obese
people [71]. The increase in inflammation may be in re-
sponse to over-nutrition initiating an immune response
[72], particularly linked to the consumption of dietary fats
[73]. Moreover, elevated TNF-a, along with other inflam-
matory mediators and markers are associated with chronic
pain [74]. Elevated synovial TNF-a levels are also predict-
ive of pain severity and a poor outcome following
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temporomandibular joint surgery [75]. Furthermore, ele-
vated serum levels of TNF-a and interleukin-6 (IL-6) are
associated with less improvement to treatment in those
with chronic pain [76] and TNF-a may moderate the rela-
tionship between chronic back pain and depressive symp-
toms [77].

Systemic inflammation related to adiposity has been linked
to other structural joint changes and this may be one pheno-
type that contributes to osteoarthritis [78]. In the knee, both
TNF-a and IL-6 have been associated with knee cartilage loss
[24] and elevated IL-6 is a predictor of radiographic osteo-
arthritis [79], suggesting a link between low-level inflamma-
tion and osteoarthritis pathogenesis. Tendinopathy has also
been linked with dietary fats, adiposity and inflammation [80,
81], highlighting that obesity may not necessarily be only
related to excessive load. Clearly elevated body fat is linked
with structural changes and pain in multiple regions and
may explain the known link between elevated BMI and
osteoarthritis in non-weight-bearing joints such as the hands
[15]. Future work to investigate if there is a true discord-
ance between fat mass and fat-free mass may help
strengthen the notion that body composition is more
meaningful measure of risk for musculoskeletal pain.

This review should be considered in light of certain limi-
tations. Firstly, given the lack of homogeneity in follow-up
time, we were unable to undertake a meta-analysis on
longitudinal associations between musculoskeletal pain and
body fat. Secondly, despite the considerable variability in
the quality of the articles included in this study, a number
of items assessed with the EAI would have scored higher
had they been explicitly reported, such as the reliability and
validity of the tools used to assess pain and body compos-
ition. A number of the tools are known to be both reliable
and valid, but unfortunately this was not reported by the
authors. Thirdly, the case-definition for pain did vary
between studies and thus while we did perform a
meta-analysis by region those with stricter criteria may
under-report the prevalence, incidence or progression of
pain. Fourthly, the pooled estimates of the meta-analyses
are small to medium in size, suggesting a weak to moderate
effect which should be taken into consideration. Finally, this
review focused on the association between body fat and
pain, but it did not investigate whether lean mass was
inversely related to pain. However, this is the first review to
systematically appraise and synthesise studies examining
the relationship between body fat and musculoskeletal pain.

Conclusion

This systematic review has demonstrated that increased
body fat is positively associated with widespread pain,
low-back pain, knee pain and foot pain. Meta-analysis
found positive cross-sectional associations between in-
creased body fat and widespread and single-site joint pain
in the low-back, knee and foot. Evidence from longitudinal
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studies suggests elevated body fat may infer increased risk
of incident and worsening joint pain, although further
high-quality studies are required.
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